MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-0o Structured version   Visualization version   GIF version

Definition df-0o 29988
Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-0o 0op = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ ((BaseSetβ€˜π‘’) Γ— {(0vecβ€˜π‘€)}))
Distinct variable group:   𝑀,𝑒

Detailed syntax breakdown of Definition df-0o
StepHypRef Expression
1 c0o 29984 . 2 class 0op
2 vu . . 3 setvar 𝑒
3 vw . . 3 setvar 𝑀
4 cnv 29825 . . 3 class NrmCVec
52cv 1541 . . . . 5 class 𝑒
6 cba 29827 . . . . 5 class BaseSet
75, 6cfv 6541 . . . 4 class (BaseSetβ€˜π‘’)
83cv 1541 . . . . . 6 class 𝑀
9 cn0v 29829 . . . . . 6 class 0vec
108, 9cfv 6541 . . . . 5 class (0vecβ€˜π‘€)
1110csn 4628 . . . 4 class {(0vecβ€˜π‘€)}
127, 11cxp 5674 . . 3 class ((BaseSetβ€˜π‘’) Γ— {(0vecβ€˜π‘€)})
132, 3, 4, 4, 12cmpo 7408 . 2 class (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ ((BaseSetβ€˜π‘’) Γ— {(0vecβ€˜π‘€)}))
141, 13wceq 1542 1 wff 0op = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ ((BaseSetβ€˜π‘’) Γ— {(0vecβ€˜π‘€)}))
Colors of variables: wff setvar class
This definition is referenced by:  0ofval  30028
  Copyright terms: Public domain W3C validator