Detailed syntax breakdown of Definition df-0o
| Step | Hyp | Ref
| Expression |
| 1 | | c0o 30672 |
. 2
class
0op |
| 2 | | vu |
. . 3
setvar 𝑢 |
| 3 | | vw |
. . 3
setvar 𝑤 |
| 4 | | cnv 30513 |
. . 3
class
NrmCVec |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑢 |
| 6 | | cba 30515 |
. . . . 5
class
BaseSet |
| 7 | 5, 6 | cfv 6511 |
. . . 4
class
(BaseSet‘𝑢) |
| 8 | 3 | cv 1539 |
. . . . . 6
class 𝑤 |
| 9 | | cn0v 30517 |
. . . . . 6
class
0vec |
| 10 | 8, 9 | cfv 6511 |
. . . . 5
class
(0vec‘𝑤) |
| 11 | 10 | csn 4589 |
. . . 4
class
{(0vec‘𝑤)} |
| 12 | 7, 11 | cxp 5636 |
. . 3
class
((BaseSet‘𝑢)
× {(0vec‘𝑤)}) |
| 13 | 2, 3, 4, 4, 12 | cmpo 7389 |
. 2
class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦
((BaseSet‘𝑢) ×
{(0vec‘𝑤)})) |
| 14 | 1, 13 | wceq 1540 |
1
wff
0op = (𝑢 ∈
NrmCVec, 𝑤 ∈ NrmCVec
↦ ((BaseSet‘𝑢)
× {(0vec‘𝑤)})) |