Step | Hyp | Ref
| Expression |
1 | | c0o 29984 |
. 2
class
0op |
2 | | vu |
. . 3
setvar π’ |
3 | | vw |
. . 3
setvar π€ |
4 | | cnv 29825 |
. . 3
class
NrmCVec |
5 | 2 | cv 1541 |
. . . . 5
class π’ |
6 | | cba 29827 |
. . . . 5
class
BaseSet |
7 | 5, 6 | cfv 6541 |
. . . 4
class
(BaseSetβπ’) |
8 | 3 | cv 1541 |
. . . . . 6
class π€ |
9 | | cn0v 29829 |
. . . . . 6
class
0vec |
10 | 8, 9 | cfv 6541 |
. . . . 5
class
(0vecβπ€) |
11 | 10 | csn 4628 |
. . . 4
class
{(0vecβπ€)} |
12 | 7, 11 | cxp 5674 |
. . 3
class
((BaseSetβπ’)
Γ {(0vecβπ€)}) |
13 | 2, 3, 4, 4, 12 | cmpo 7408 |
. 2
class (π’ β NrmCVec, π€ β NrmCVec β¦
((BaseSetβπ’) Γ
{(0vecβπ€)})) |
14 | 1, 13 | wceq 1542 |
1
wff
0op = (π’ β
NrmCVec, π€ β NrmCVec
β¦ ((BaseSetβπ’)
Γ {(0vecβπ€)})) |