Detailed syntax breakdown of Definition df-blo
| Step | Hyp | Ref
| Expression |
| 1 | | cblo 30723 |
. 2
class
BLnOp |
| 2 | | vu |
. . 3
setvar 𝑢 |
| 3 | | vw |
. . 3
setvar 𝑤 |
| 4 | | cnv 30565 |
. . 3
class
NrmCVec |
| 5 | | vt |
. . . . . . 7
setvar 𝑡 |
| 6 | 5 | cv 1539 |
. . . . . 6
class 𝑡 |
| 7 | 2 | cv 1539 |
. . . . . . 7
class 𝑢 |
| 8 | 3 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 9 | | cnmoo 30722 |
. . . . . . 7
class
normOpOLD |
| 10 | 7, 8, 9 | co 7405 |
. . . . . 6
class (𝑢 normOpOLD 𝑤) |
| 11 | 6, 10 | cfv 6531 |
. . . . 5
class ((𝑢 normOpOLD 𝑤)‘𝑡) |
| 12 | | cpnf 11266 |
. . . . 5
class
+∞ |
| 13 | | clt 11269 |
. . . . 5
class
< |
| 14 | 11, 12, 13 | wbr 5119 |
. . . 4
wff ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ |
| 15 | | clno 30721 |
. . . . 5
class
LnOp |
| 16 | 7, 8, 15 | co 7405 |
. . . 4
class (𝑢 LnOp 𝑤) |
| 17 | 14, 5, 16 | crab 3415 |
. . 3
class {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} |
| 18 | 2, 3, 4, 4, 17 | cmpo 7407 |
. 2
class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) |
| 19 | 1, 18 | wceq 1540 |
1
wff BLnOp =
(𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) |