Detailed syntax breakdown of Definition df-blo
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cblo 30761 | . 2
class 
BLnOp | 
| 2 |  | vu | . . 3
setvar 𝑢 | 
| 3 |  | vw | . . 3
setvar 𝑤 | 
| 4 |  | cnv 30603 | . . 3
class
NrmCVec | 
| 5 |  | vt | . . . . . . 7
setvar 𝑡 | 
| 6 | 5 | cv 1539 | . . . . . 6
class 𝑡 | 
| 7 | 2 | cv 1539 | . . . . . . 7
class 𝑢 | 
| 8 | 3 | cv 1539 | . . . . . . 7
class 𝑤 | 
| 9 |  | cnmoo 30760 | . . . . . . 7
class 
normOpOLD | 
| 10 | 7, 8, 9 | co 7431 | . . . . . 6
class (𝑢 normOpOLD 𝑤) | 
| 11 | 6, 10 | cfv 6561 | . . . . 5
class ((𝑢 normOpOLD 𝑤)‘𝑡) | 
| 12 |  | cpnf 11292 | . . . . 5
class
+∞ | 
| 13 |  | clt 11295 | . . . . 5
class 
< | 
| 14 | 11, 12, 13 | wbr 5143 | . . . 4
wff ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ | 
| 15 |  | clno 30759 | . . . . 5
class 
LnOp | 
| 16 | 7, 8, 15 | co 7431 | . . . 4
class (𝑢 LnOp 𝑤) | 
| 17 | 14, 5, 16 | crab 3436 | . . 3
class {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} | 
| 18 | 2, 3, 4, 4, 17 | cmpo 7433 | . 2
class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) | 
| 19 | 1, 18 | wceq 1540 | 1
wff  BLnOp =
(𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) |