![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ofval | Structured version Visualization version GIF version |
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0oval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
0oval.6 | ⊢ 𝑍 = (0vec‘𝑊) |
0oval.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
Ref | Expression |
---|---|
0ofval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0oval.0 | . 2 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
2 | fveq2 6907 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
3 | 0oval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 2, 3 | eqtr4di 2793 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
5 | 4 | xpeq1d 5718 | . . 3 ⊢ (𝑢 = 𝑈 → ((BaseSet‘𝑢) × {(0vec‘𝑤)}) = (𝑋 × {(0vec‘𝑤)})) |
6 | fveq2 6907 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = (0vec‘𝑊)) | |
7 | 0oval.6 | . . . . . 6 ⊢ 𝑍 = (0vec‘𝑊) | |
8 | 6, 7 | eqtr4di 2793 | . . . . 5 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = 𝑍) |
9 | 8 | sneqd 4643 | . . . 4 ⊢ (𝑤 = 𝑊 → {(0vec‘𝑤)} = {𝑍}) |
10 | 9 | xpeq2d 5719 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑋 × {(0vec‘𝑤)}) = (𝑋 × {𝑍})) |
11 | df-0o 30776 | . . 3 ⊢ 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec‘𝑤)})) | |
12 | 3 | fvexi 6921 | . . . 4 ⊢ 𝑋 ∈ V |
13 | snex 5442 | . . . 4 ⊢ {𝑍} ∈ V | |
14 | 12, 13 | xpex 7772 | . . 3 ⊢ (𝑋 × {𝑍}) ∈ V |
15 | 5, 10, 11, 14 | ovmpo 7593 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = (𝑋 × {𝑍})) |
16 | 1, 15 | eqtrid 2787 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {csn 4631 × cxp 5687 ‘cfv 6563 (class class class)co 7431 NrmCVeccnv 30613 BaseSetcba 30615 0veccn0v 30617 0op c0o 30772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-0o 30776 |
This theorem is referenced by: 0oval 30817 0oo 30818 lnon0 30827 blocni 30834 hh0oi 31932 |
Copyright terms: Public domain | W3C validator |