| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ofval | Structured version Visualization version GIF version | ||
| Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0oval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| 0oval.6 | ⊢ 𝑍 = (0vec‘𝑊) |
| 0oval.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
| Ref | Expression |
|---|---|
| 0ofval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oval.0 | . 2 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
| 2 | fveq2 6861 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
| 3 | 0oval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
| 5 | 4 | xpeq1d 5670 | . . 3 ⊢ (𝑢 = 𝑈 → ((BaseSet‘𝑢) × {(0vec‘𝑤)}) = (𝑋 × {(0vec‘𝑤)})) |
| 6 | fveq2 6861 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = (0vec‘𝑊)) | |
| 7 | 0oval.6 | . . . . . 6 ⊢ 𝑍 = (0vec‘𝑊) | |
| 8 | 6, 7 | eqtr4di 2783 | . . . . 5 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = 𝑍) |
| 9 | 8 | sneqd 4604 | . . . 4 ⊢ (𝑤 = 𝑊 → {(0vec‘𝑤)} = {𝑍}) |
| 10 | 9 | xpeq2d 5671 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑋 × {(0vec‘𝑤)}) = (𝑋 × {𝑍})) |
| 11 | df-0o 30683 | . . 3 ⊢ 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec‘𝑤)})) | |
| 12 | 3 | fvexi 6875 | . . . 4 ⊢ 𝑋 ∈ V |
| 13 | snex 5394 | . . . 4 ⊢ {𝑍} ∈ V | |
| 14 | 12, 13 | xpex 7732 | . . 3 ⊢ (𝑋 × {𝑍}) ∈ V |
| 15 | 5, 10, 11, 14 | ovmpo 7552 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = (𝑋 × {𝑍})) |
| 16 | 1, 15 | eqtrid 2777 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 × cxp 5639 ‘cfv 6514 (class class class)co 7390 NrmCVeccnv 30520 BaseSetcba 30522 0veccn0v 30524 0op c0o 30679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-0o 30683 |
| This theorem is referenced by: 0oval 30724 0oo 30725 lnon0 30734 blocni 30741 hh0oi 31839 |
| Copyright terms: Public domain | W3C validator |