![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ofval | Structured version Visualization version GIF version |
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0oval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
0oval.6 | ⊢ 𝑍 = (0vec‘𝑊) |
0oval.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
Ref | Expression |
---|---|
0ofval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0oval.0 | . 2 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
2 | fveq2 6901 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
3 | 0oval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 2, 3 | eqtr4di 2784 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
5 | 4 | xpeq1d 5711 | . . 3 ⊢ (𝑢 = 𝑈 → ((BaseSet‘𝑢) × {(0vec‘𝑤)}) = (𝑋 × {(0vec‘𝑤)})) |
6 | fveq2 6901 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = (0vec‘𝑊)) | |
7 | 0oval.6 | . . . . . 6 ⊢ 𝑍 = (0vec‘𝑊) | |
8 | 6, 7 | eqtr4di 2784 | . . . . 5 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = 𝑍) |
9 | 8 | sneqd 4645 | . . . 4 ⊢ (𝑤 = 𝑊 → {(0vec‘𝑤)} = {𝑍}) |
10 | 9 | xpeq2d 5712 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑋 × {(0vec‘𝑤)}) = (𝑋 × {𝑍})) |
11 | df-0o 30680 | . . 3 ⊢ 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec‘𝑤)})) | |
12 | 3 | fvexi 6915 | . . . 4 ⊢ 𝑋 ∈ V |
13 | snex 5437 | . . . 4 ⊢ {𝑍} ∈ V | |
14 | 12, 13 | xpex 7761 | . . 3 ⊢ (𝑋 × {𝑍}) ∈ V |
15 | 5, 10, 11, 14 | ovmpo 7586 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = (𝑋 × {𝑍})) |
16 | 1, 15 | eqtrid 2778 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {csn 4633 × cxp 5680 ‘cfv 6554 (class class class)co 7424 NrmCVeccnv 30517 BaseSetcba 30519 0veccn0v 30521 0op c0o 30676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-0o 30680 |
This theorem is referenced by: 0oval 30721 0oo 30722 lnon0 30731 blocni 30738 hh0oi 31836 |
Copyright terms: Public domain | W3C validator |