| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ofval | Structured version Visualization version GIF version | ||
| Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0oval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| 0oval.6 | ⊢ 𝑍 = (0vec‘𝑊) |
| 0oval.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
| Ref | Expression |
|---|---|
| 0ofval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oval.0 | . 2 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
| 2 | fveq2 6876 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
| 3 | 0oval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | 2, 3 | eqtr4di 2788 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
| 5 | 4 | xpeq1d 5683 | . . 3 ⊢ (𝑢 = 𝑈 → ((BaseSet‘𝑢) × {(0vec‘𝑤)}) = (𝑋 × {(0vec‘𝑤)})) |
| 6 | fveq2 6876 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = (0vec‘𝑊)) | |
| 7 | 0oval.6 | . . . . . 6 ⊢ 𝑍 = (0vec‘𝑊) | |
| 8 | 6, 7 | eqtr4di 2788 | . . . . 5 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = 𝑍) |
| 9 | 8 | sneqd 4613 | . . . 4 ⊢ (𝑤 = 𝑊 → {(0vec‘𝑤)} = {𝑍}) |
| 10 | 9 | xpeq2d 5684 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑋 × {(0vec‘𝑤)}) = (𝑋 × {𝑍})) |
| 11 | df-0o 30728 | . . 3 ⊢ 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec‘𝑤)})) | |
| 12 | 3 | fvexi 6890 | . . . 4 ⊢ 𝑋 ∈ V |
| 13 | snex 5406 | . . . 4 ⊢ {𝑍} ∈ V | |
| 14 | 12, 13 | xpex 7747 | . . 3 ⊢ (𝑋 × {𝑍}) ∈ V |
| 15 | 5, 10, 11, 14 | ovmpo 7567 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = (𝑋 × {𝑍})) |
| 16 | 1, 15 | eqtrid 2782 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 ‘cfv 6531 (class class class)co 7405 NrmCVeccnv 30565 BaseSetcba 30567 0veccn0v 30569 0op c0o 30724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-0o 30728 |
| This theorem is referenced by: 0oval 30769 0oo 30770 lnon0 30779 blocni 30786 hh0oi 31884 |
| Copyright terms: Public domain | W3C validator |