MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ofval Structured version   Visualization version   GIF version

Theorem 0ofval 30035
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oval.1 𝑋 = (BaseSetβ€˜π‘ˆ)
0oval.6 𝑍 = (0vecβ€˜π‘Š)
0oval.0 𝑂 = (π‘ˆ 0op π‘Š)
Assertion
Ref Expression
0ofval ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝑂 = (𝑋 Γ— {𝑍}))

Proof of Theorem 0ofval
Dummy variables 𝑀 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0oval.0 . 2 𝑂 = (π‘ˆ 0op π‘Š)
2 fveq2 6891 . . . . 5 (𝑒 = π‘ˆ β†’ (BaseSetβ€˜π‘’) = (BaseSetβ€˜π‘ˆ))
3 0oval.1 . . . . 5 𝑋 = (BaseSetβ€˜π‘ˆ)
42, 3eqtr4di 2790 . . . 4 (𝑒 = π‘ˆ β†’ (BaseSetβ€˜π‘’) = 𝑋)
54xpeq1d 5705 . . 3 (𝑒 = π‘ˆ β†’ ((BaseSetβ€˜π‘’) Γ— {(0vecβ€˜π‘€)}) = (𝑋 Γ— {(0vecβ€˜π‘€)}))
6 fveq2 6891 . . . . . 6 (𝑀 = π‘Š β†’ (0vecβ€˜π‘€) = (0vecβ€˜π‘Š))
7 0oval.6 . . . . . 6 𝑍 = (0vecβ€˜π‘Š)
86, 7eqtr4di 2790 . . . . 5 (𝑀 = π‘Š β†’ (0vecβ€˜π‘€) = 𝑍)
98sneqd 4640 . . . 4 (𝑀 = π‘Š β†’ {(0vecβ€˜π‘€)} = {𝑍})
109xpeq2d 5706 . . 3 (𝑀 = π‘Š β†’ (𝑋 Γ— {(0vecβ€˜π‘€)}) = (𝑋 Γ— {𝑍}))
11 df-0o 29995 . . 3 0op = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ ((BaseSetβ€˜π‘’) Γ— {(0vecβ€˜π‘€)}))
123fvexi 6905 . . . 4 𝑋 ∈ V
13 snex 5431 . . . 4 {𝑍} ∈ V
1412, 13xpex 7739 . . 3 (𝑋 Γ— {𝑍}) ∈ V
155, 10, 11, 14ovmpo 7567 . 2 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ (π‘ˆ 0op π‘Š) = (𝑋 Γ— {𝑍}))
161, 15eqtrid 2784 1 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝑂 = (𝑋 Γ— {𝑍}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {csn 4628   Γ— cxp 5674  β€˜cfv 6543  (class class class)co 7408  NrmCVeccnv 29832  BaseSetcba 29834  0veccn0v 29836   0op c0o 29991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-0o 29995
This theorem is referenced by:  0oval  30036  0oo  30037  lnon0  30046  blocni  30053  hh0oi  31151
  Copyright terms: Public domain W3C validator