MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ofval Structured version   Visualization version   GIF version

Theorem 0ofval 28566
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oval.1 𝑋 = (BaseSet‘𝑈)
0oval.6 𝑍 = (0vec𝑊)
0oval.0 𝑂 = (𝑈 0op 𝑊)
Assertion
Ref Expression
0ofval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍}))

Proof of Theorem 0ofval
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0oval.0 . 2 𝑂 = (𝑈 0op 𝑊)
2 fveq2 6672 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 0oval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
42, 3syl6eqr 2876 . . . 4 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
54xpeq1d 5586 . . 3 (𝑢 = 𝑈 → ((BaseSet‘𝑢) × {(0vec𝑤)}) = (𝑋 × {(0vec𝑤)}))
6 fveq2 6672 . . . . . 6 (𝑤 = 𝑊 → (0vec𝑤) = (0vec𝑊))
7 0oval.6 . . . . . 6 𝑍 = (0vec𝑊)
86, 7syl6eqr 2876 . . . . 5 (𝑤 = 𝑊 → (0vec𝑤) = 𝑍)
98sneqd 4581 . . . 4 (𝑤 = 𝑊 → {(0vec𝑤)} = {𝑍})
109xpeq2d 5587 . . 3 (𝑤 = 𝑊 → (𝑋 × {(0vec𝑤)}) = (𝑋 × {𝑍}))
11 df-0o 28526 . . 3 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec𝑤)}))
123fvexi 6686 . . . 4 𝑋 ∈ V
13 snex 5334 . . . 4 {𝑍} ∈ V
1412, 13xpex 7478 . . 3 (𝑋 × {𝑍}) ∈ V
155, 10, 11, 14ovmpo 7312 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = (𝑋 × {𝑍}))
161, 15syl5eq 2870 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {csn 4569   × cxp 5555  cfv 6357  (class class class)co 7158  NrmCVeccnv 28363  BaseSetcba 28365  0veccn0v 28367   0op c0o 28522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-0o 28526
This theorem is referenced by:  0oval  28567  0oo  28568  lnon0  28577  blocni  28584  hh0oi  29682
  Copyright terms: Public domain W3C validator