Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ofval | Structured version Visualization version GIF version |
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0oval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
0oval.6 | ⊢ 𝑍 = (0vec‘𝑊) |
0oval.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
Ref | Expression |
---|---|
0ofval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0oval.0 | . 2 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
2 | fveq2 6756 | . . . . 5 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) | |
3 | 0oval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 2, 3 | eqtr4di 2797 | . . . 4 ⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
5 | 4 | xpeq1d 5609 | . . 3 ⊢ (𝑢 = 𝑈 → ((BaseSet‘𝑢) × {(0vec‘𝑤)}) = (𝑋 × {(0vec‘𝑤)})) |
6 | fveq2 6756 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = (0vec‘𝑊)) | |
7 | 0oval.6 | . . . . . 6 ⊢ 𝑍 = (0vec‘𝑊) | |
8 | 6, 7 | eqtr4di 2797 | . . . . 5 ⊢ (𝑤 = 𝑊 → (0vec‘𝑤) = 𝑍) |
9 | 8 | sneqd 4570 | . . . 4 ⊢ (𝑤 = 𝑊 → {(0vec‘𝑤)} = {𝑍}) |
10 | 9 | xpeq2d 5610 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑋 × {(0vec‘𝑤)}) = (𝑋 × {𝑍})) |
11 | df-0o 29010 | . . 3 ⊢ 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec‘𝑤)})) | |
12 | 3 | fvexi 6770 | . . . 4 ⊢ 𝑋 ∈ V |
13 | snex 5349 | . . . 4 ⊢ {𝑍} ∈ V | |
14 | 12, 13 | xpex 7581 | . . 3 ⊢ (𝑋 × {𝑍}) ∈ V |
15 | 5, 10, 11, 14 | ovmpo 7411 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = (𝑋 × {𝑍})) |
16 | 1, 15 | syl5eq 2791 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 × cxp 5578 ‘cfv 6418 (class class class)co 7255 NrmCVeccnv 28847 BaseSetcba 28849 0veccn0v 28851 0op c0o 29006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-0o 29010 |
This theorem is referenced by: 0oval 29051 0oo 29052 lnon0 29061 blocni 29068 hh0oi 30166 |
Copyright terms: Public domain | W3C validator |