MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ofval Structured version   Visualization version   GIF version

Theorem 0ofval 30819
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oval.1 𝑋 = (BaseSet‘𝑈)
0oval.6 𝑍 = (0vec𝑊)
0oval.0 𝑂 = (𝑈 0op 𝑊)
Assertion
Ref Expression
0ofval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍}))

Proof of Theorem 0ofval
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0oval.0 . 2 𝑂 = (𝑈 0op 𝑊)
2 fveq2 6920 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 0oval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
42, 3eqtr4di 2798 . . . 4 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
54xpeq1d 5729 . . 3 (𝑢 = 𝑈 → ((BaseSet‘𝑢) × {(0vec𝑤)}) = (𝑋 × {(0vec𝑤)}))
6 fveq2 6920 . . . . . 6 (𝑤 = 𝑊 → (0vec𝑤) = (0vec𝑊))
7 0oval.6 . . . . . 6 𝑍 = (0vec𝑊)
86, 7eqtr4di 2798 . . . . 5 (𝑤 = 𝑊 → (0vec𝑤) = 𝑍)
98sneqd 4660 . . . 4 (𝑤 = 𝑊 → {(0vec𝑤)} = {𝑍})
109xpeq2d 5730 . . 3 (𝑤 = 𝑊 → (𝑋 × {(0vec𝑤)}) = (𝑋 × {𝑍}))
11 df-0o 30779 . . 3 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec𝑤)}))
123fvexi 6934 . . . 4 𝑋 ∈ V
13 snex 5451 . . . 4 {𝑍} ∈ V
1412, 13xpex 7788 . . 3 (𝑋 × {𝑍}) ∈ V
155, 10, 11, 14ovmpo 7610 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = (𝑋 × {𝑍}))
161, 15eqtrid 2792 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648   × cxp 5698  cfv 6573  (class class class)co 7448  NrmCVeccnv 30616  BaseSetcba 30618  0veccn0v 30620   0op c0o 30775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-0o 30779
This theorem is referenced by:  0oval  30820  0oo  30821  lnon0  30830  blocni  30837  hh0oi  31935
  Copyright terms: Public domain W3C validator