![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ofval | Structured version Visualization version GIF version |
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0oval.1 | β’ π = (BaseSetβπ) |
0oval.6 | β’ π = (0vecβπ) |
0oval.0 | β’ π = (π 0op π) |
Ref | Expression |
---|---|
0ofval | β’ ((π β NrmCVec β§ π β NrmCVec) β π = (π Γ {π})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0oval.0 | . 2 β’ π = (π 0op π) | |
2 | fveq2 6891 | . . . . 5 β’ (π’ = π β (BaseSetβπ’) = (BaseSetβπ)) | |
3 | 0oval.1 | . . . . 5 β’ π = (BaseSetβπ) | |
4 | 2, 3 | eqtr4di 2790 | . . . 4 β’ (π’ = π β (BaseSetβπ’) = π) |
5 | 4 | xpeq1d 5705 | . . 3 β’ (π’ = π β ((BaseSetβπ’) Γ {(0vecβπ€)}) = (π Γ {(0vecβπ€)})) |
6 | fveq2 6891 | . . . . . 6 β’ (π€ = π β (0vecβπ€) = (0vecβπ)) | |
7 | 0oval.6 | . . . . . 6 β’ π = (0vecβπ) | |
8 | 6, 7 | eqtr4di 2790 | . . . . 5 β’ (π€ = π β (0vecβπ€) = π) |
9 | 8 | sneqd 4640 | . . . 4 β’ (π€ = π β {(0vecβπ€)} = {π}) |
10 | 9 | xpeq2d 5706 | . . 3 β’ (π€ = π β (π Γ {(0vecβπ€)}) = (π Γ {π})) |
11 | df-0o 29995 | . . 3 β’ 0op = (π’ β NrmCVec, π€ β NrmCVec β¦ ((BaseSetβπ’) Γ {(0vecβπ€)})) | |
12 | 3 | fvexi 6905 | . . . 4 β’ π β V |
13 | snex 5431 | . . . 4 β’ {π} β V | |
14 | 12, 13 | xpex 7739 | . . 3 β’ (π Γ {π}) β V |
15 | 5, 10, 11, 14 | ovmpo 7567 | . 2 β’ ((π β NrmCVec β§ π β NrmCVec) β (π 0op π) = (π Γ {π})) |
16 | 1, 15 | eqtrid 2784 | 1 β’ ((π β NrmCVec β§ π β NrmCVec) β π = (π Γ {π})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {csn 4628 Γ cxp 5674 βcfv 6543 (class class class)co 7408 NrmCVeccnv 29832 BaseSetcba 29834 0veccn0v 29836 0op c0o 29991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-0o 29995 |
This theorem is referenced by: 0oval 30036 0oo 30037 lnon0 30046 blocni 30053 hh0oi 31151 |
Copyright terms: Public domain | W3C validator |