MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ablo Structured version   Visualization version   GIF version

Definition df-ablo 28916
Description: Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-ablo AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)}
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-ablo
StepHypRef Expression
1 cablo 28915 . 2 class AbelOp
2 vx . . . . . . . 8 setvar 𝑥
32cv 1538 . . . . . . 7 class 𝑥
4 vy . . . . . . . 8 setvar 𝑦
54cv 1538 . . . . . . 7 class 𝑦
6 vg . . . . . . . 8 setvar 𝑔
76cv 1538 . . . . . . 7 class 𝑔
83, 5, 7co 7284 . . . . . 6 class (𝑥𝑔𝑦)
95, 3, 7co 7284 . . . . . 6 class (𝑦𝑔𝑥)
108, 9wceq 1539 . . . . 5 wff (𝑥𝑔𝑦) = (𝑦𝑔𝑥)
117crn 5591 . . . . 5 class ran 𝑔
1210, 4, 11wral 3065 . . . 4 wff 𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)
1312, 2, 11wral 3065 . . 3 wff 𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)
14 cgr 28860 . . 3 class GrpOp
1513, 6, 14crab 3069 . 2 class {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)}
161, 15wceq 1539 1 wff AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)}
Colors of variables: wff setvar class
This definition is referenced by:  isablo  28917
  Copyright terms: Public domain W3C validator