MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isablo Structured version   Visualization version   GIF version

Theorem isablo 30578
Description: The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
isabl.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isablo (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦

Proof of Theorem isablo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rneq 5961 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
2 isabl.1 . . . . 5 𝑋 = ran 𝐺
31, 2eqtr4di 2798 . . . 4 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
4 raleq 3331 . . . . 5 (ran 𝑔 = 𝑋 → (∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
54raleqbi1dv 3346 . . . 4 (ran 𝑔 = 𝑋 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
63, 5syl 17 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
7 oveq 7454 . . . . 5 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
8 oveq 7454 . . . . 5 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
97, 8eqeq12d 2756 . . . 4 (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
1092ralbidv 3227 . . 3 (𝑔 = 𝐺 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
116, 10bitrd 279 . 2 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
12 df-ablo 30577 . 2 AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)}
1311, 12elrab2 3711 1 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  ran crn 5701  (class class class)co 7448  GrpOpcgr 30521  AbelOpcablo 30576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-iota 6525  df-fv 6581  df-ov 7451  df-ablo 30577
This theorem is referenced by:  ablogrpo  30579  ablocom  30580  isabloi  30583
  Copyright terms: Public domain W3C validator