![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isablo | Structured version Visualization version GIF version |
Description: The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isabl.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
isablo | ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq 5892 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
2 | isabl.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | eqtr4di 2791 | . . . 4 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
4 | raleq 3308 | . . . . 5 ⊢ (ran 𝑔 = 𝑋 → (∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥))) | |
5 | 4 | raleqbi1dv 3306 | . . . 4 ⊢ (ran 𝑔 = 𝑋 → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥))) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥))) |
7 | oveq 7364 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) | |
8 | oveq 7364 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
9 | 7, 8 | eqeq12d 2749 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
10 | 9 | 2ralbidv 3209 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
11 | 6, 10 | bitrd 279 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
12 | df-ablo 29529 | . 2 ⊢ AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)} | |
13 | 11, 12 | elrab2 3649 | 1 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ran crn 5635 (class class class)co 7358 GrpOpcgr 29473 AbelOpcablo 29528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-cnv 5642 df-dm 5644 df-rn 5645 df-iota 6449 df-fv 6505 df-ov 7361 df-ablo 29529 |
This theorem is referenced by: ablogrpo 29531 ablocom 29532 isabloi 29535 |
Copyright terms: Public domain | W3C validator |