MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isablo Structured version   Visualization version   GIF version

Theorem isablo 30294
Description: The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
isabl.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isablo (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦

Proof of Theorem isablo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rneq 5926 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
2 isabl.1 . . . . 5 𝑋 = ran 𝐺
31, 2eqtr4di 2782 . . . 4 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
4 raleq 3314 . . . . 5 (ran 𝑔 = 𝑋 → (∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
54raleqbi1dv 3325 . . . 4 (ran 𝑔 = 𝑋 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
63, 5syl 17 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
7 oveq 7408 . . . . 5 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
8 oveq 7408 . . . . 5 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
97, 8eqeq12d 2740 . . . 4 (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
1092ralbidv 3210 . . 3 (𝑔 = 𝐺 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
116, 10bitrd 279 . 2 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
12 df-ablo 30293 . 2 AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)}
1311, 12elrab2 3679 1 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  ran crn 5668  (class class class)co 7402  GrpOpcgr 30237  AbelOpcablo 30292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-cnv 5675  df-dm 5677  df-rn 5678  df-iota 6486  df-fv 6542  df-ov 7405  df-ablo 30293
This theorem is referenced by:  ablogrpo  30295  ablocom  30296  isabloi  30299
  Copyright terms: Public domain W3C validator