Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isablo | Structured version Visualization version GIF version |
Description: The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isabl.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
isablo | ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq 5871 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
2 | isabl.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | eqtr4di 2794 | . . . 4 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
4 | raleq 3305 | . . . . 5 ⊢ (ran 𝑔 = 𝑋 → (∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥))) | |
5 | 4 | raleqbi1dv 3303 | . . . 4 ⊢ (ran 𝑔 = 𝑋 → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥))) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥))) |
7 | oveq 7335 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) | |
8 | oveq 7335 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
9 | 7, 8 | eqeq12d 2752 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
10 | 9 | 2ralbidv 3208 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
11 | 6, 10 | bitrd 278 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
12 | df-ablo 29136 | . 2 ⊢ AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)} | |
13 | 11, 12 | elrab2 3637 | 1 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ran crn 5615 (class class class)co 7329 GrpOpcgr 29080 AbelOpcablo 29135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-iota 6425 df-fv 6481 df-ov 7332 df-ablo 29136 |
This theorem is referenced by: ablogrpo 29138 ablocom 29139 isabloi 29142 |
Copyright terms: Public domain | W3C validator |