MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isablo Structured version   Visualization version   GIF version

Theorem isablo 28809
Description: The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
isabl.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isablo (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦

Proof of Theorem isablo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rneq 5834 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
2 isabl.1 . . . . 5 𝑋 = ran 𝐺
31, 2eqtr4di 2797 . . . 4 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
4 raleq 3333 . . . . 5 (ran 𝑔 = 𝑋 → (∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
54raleqbi1dv 3331 . . . 4 (ran 𝑔 = 𝑋 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
63, 5syl 17 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
7 oveq 7261 . . . . 5 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
8 oveq 7261 . . . . 5 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
97, 8eqeq12d 2754 . . . 4 (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
1092ralbidv 3122 . . 3 (𝑔 = 𝐺 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
116, 10bitrd 278 . 2 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
12 df-ablo 28808 . 2 AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)}
1311, 12elrab2 3620 1 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  ran crn 5581  (class class class)co 7255  GrpOpcgr 28752  AbelOpcablo 28807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-iota 6376  df-fv 6426  df-ov 7258  df-ablo 28808
This theorem is referenced by:  ablogrpo  28810  ablocom  28811  isabloi  28814
  Copyright terms: Public domain W3C validator