Home | Metamath
Proof Explorer Theorem List (p. 301 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29288) |
Hilbert Space Explorer
(29289-30811) |
Users' Mathboxes
(30812-46499) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | qlax5i 30001 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵))) = 𝐴 | ||
Theorem | qlaxr1i 30002 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐵 = 𝐴 | ||
Theorem | qlaxr2i 30003 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 = 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 = 𝐶 | ||
Theorem | qlaxr4i 30004 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (⊥‘𝐴) = (⊥‘𝐵) | ||
Theorem | qlaxr5i 30005 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∨ℋ 𝐶) = (𝐵 ∨ℋ 𝐶) | ||
Theorem | qlaxr3i 30006 | A variation of the orthomodular law, showing Cℋ is an orthomodular lattice. (This corresponds to axiom "ax-r3" in the Quantum Logic Explorer.) (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ (𝐶 ∨ℋ (⊥‘𝐶)) = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐵))) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | chscllem1 30007* | Lemma for chscl 30011. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) | ||
Theorem | chscllem2 30008* | Lemma for chscl 30011. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑣 ) | ||
Theorem | chscllem3 30009* | Lemma for chscl 30011. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) & ⊢ (𝜑 → (𝐻‘𝑁) = (𝐶 +ℎ 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐹‘𝑁)) | ||
Theorem | chscllem4 30010* | Lemma for chscl 30011. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐵)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝑢 ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | chscl 30011 | The subspace sum of two closed orthogonal spaces is closed. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) ⇒ ⊢ (𝜑 → (𝐴 +ℋ 𝐵) ∈ Cℋ ) | ||
Theorem | osumi 30012 | If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of [Kalmbach] p. 67. Note that the (countable) Axiom of Choice is used for this proof via pjhth 29763, although "the hard part" of this proof, chscl 30011, requires no choice. (Contributed by NM, 28-Oct-1999.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | osumcori 30013 | Corollary of osumi 30012. (Contributed by NM, 5-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) +ℋ (𝐴 ∩ (⊥‘𝐵))) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) | ||
Theorem | osumcor2i 30014 | Corollary of osumi 30012, showing it holds under the weaker hypothesis that 𝐴 and 𝐵 commute. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | osum 30015 | If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of [Kalmbach] p. 67. (Contributed by NM, 31-Oct-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | spansnji 30016 | The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵})) | ||
Theorem | spansnj 30017 | The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵}))) | ||
Theorem | spansnscl 30018 | The subspace sum of a closed subspace and a one-dimensional subspace is closed. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℋ (span‘{𝐵})) ∈ Cℋ ) | ||
Theorem | sumspansn 30019 | The sum of two vectors belong to the span of one of them iff the other vector also belongs. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))) | ||
Theorem | spansnm0i 30020 | The meet of different one-dimensional subspaces is the zero subspace. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (¬ 𝐴 ∈ (span‘{𝐵}) → ((span‘{𝐴}) ∩ (span‘{𝐵})) = 0ℋ) | ||
Theorem | nonbooli 30021 | A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ but (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ 0ℋ. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐹 = (span‘{𝐴}) & ⊢ 𝐺 = (span‘{𝐵}) & ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) ⇒ ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) | ||
Theorem | spansncvi 30022 | Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ (span‘{𝐶}))) → 𝐵 = (𝐴 ∨ℋ (span‘{𝐶}))) | ||
Theorem | spansncv 30023 | Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ (span‘{𝐶}))) → 𝐵 = (𝐴 ∨ℋ (span‘{𝐶})))) | ||
Theorem | 5oalem1 30024 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ ⇒ ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) | ||
Theorem | 5oalem2 30025 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ ⇒ ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑥 +ℎ 𝑦) = (𝑧 +ℎ 𝑤)) → (𝑥 −ℎ 𝑧) ∈ ((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷))) | ||
Theorem | 5oalem3 30026 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺)) ∧ ((𝑥 +ℎ 𝑦) = (𝑓 +ℎ 𝑔) ∧ (𝑧 +ℎ 𝑤) = (𝑓 +ℎ 𝑔))) → (𝑥 −ℎ 𝑧) ∈ (((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) +ℋ ((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)))) | ||
Theorem | 5oalem4 30027 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺)) ∧ ((𝑥 +ℎ 𝑦) = (𝑓 +ℎ 𝑔) ∧ (𝑧 +ℎ 𝑤) = (𝑓 +ℎ 𝑔))) → (𝑥 −ℎ 𝑧) ∈ (((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) +ℋ ((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺))))) | ||
Theorem | 5oalem5 30028 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺) ∧ (𝑣 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆))) ∧ (((𝑥 +ℎ 𝑦) = (𝑣 +ℎ 𝑢) ∧ (𝑧 +ℎ 𝑤) = (𝑣 +ℎ 𝑢)) ∧ (𝑓 +ℎ 𝑔) = (𝑣 +ℎ 𝑢))) → (𝑥 −ℎ 𝑧) ∈ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆))))))) | ||
Theorem | 5oalem6 30029 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ℎ = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) ∧ ℎ = (𝑧 +ℎ 𝑤))) ∧ (((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺) ∧ ℎ = (𝑓 +ℎ 𝑔)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆) ∧ ℎ = (𝑣 +ℎ 𝑢)))) → ℎ ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))))))))) | ||
Theorem | 5oalem7 30030 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) TODO: replace uses of ee4anv 2349 with 4exdistrv 1960 as in 3oalem3 30034. (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((𝐴 +ℋ 𝐵) ∩ (𝐶 +ℋ 𝐷)) ∩ ((𝐹 +ℋ 𝐺) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆))))))))) | ||
Theorem | 5oai 30031 | Orthoarguesian law 5OA. This 8-variable inference is called 5OA because it can be converted to a 5-variable equation (see Quantum Logic Explorer). (Contributed by NM, 5-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ & ⊢ 𝐴 ⊆ (⊥‘𝐵) & ⊢ 𝐶 ⊆ (⊥‘𝐷) & ⊢ 𝐹 ⊆ (⊥‘𝐺) & ⊢ 𝑅 ⊆ (⊥‘𝑆) ⇒ ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (𝐶 ∨ℋ 𝐷)) ∩ ((𝐹 ∨ℋ 𝐺) ∩ (𝑅 ∨ℋ 𝑆))) ⊆ (𝐵 ∨ℋ (𝐴 ∩ (𝐶 ∨ℋ ((((𝐴 ∨ℋ 𝐶) ∩ (𝐵 ∨ℋ 𝐷)) ∩ (((𝐴 ∨ℋ 𝑅) ∩ (𝐵 ∨ℋ 𝑆)) ∨ℋ ((𝐶 ∨ℋ 𝑅) ∩ (𝐷 ∨ℋ 𝑆)))) ∩ ((((𝐴 ∨ℋ 𝐹) ∩ (𝐵 ∨ℋ 𝐺)) ∩ (((𝐴 ∨ℋ 𝑅) ∩ (𝐵 ∨ℋ 𝑆)) ∨ℋ ((𝐹 ∨ℋ 𝑅) ∩ (𝐺 ∨ℋ 𝑆)))) ∨ℋ (((𝐶 ∨ℋ 𝐹) ∩ (𝐷 ∨ℋ 𝐺)) ∩ (((𝐶 ∨ℋ 𝑅) ∩ (𝐷 ∨ℋ 𝑆)) ∨ℋ ((𝐹 ∨ℋ 𝑅) ∩ (𝐺 ∨ℋ 𝑆))))))))) | ||
Theorem | 3oalem1 30032* | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) | ||
Theorem | 3oalem2 30033* | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) | ||
Theorem | 3oalem3 30034 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) | ||
Theorem | 3oalem4 30035 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ⇒ ⊢ 𝑅 ⊆ (⊥‘𝐵) | ||
Theorem | 3oalem5 30036 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) = ((𝐵 ∨ℋ 𝑅) ∩ (𝐶 ∨ℋ 𝑆)) | ||
Theorem | 3oalem6 30037 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | ||
Theorem | 3oai 30038 | 3OA (weak) orthoarguesian law. Equation IV of [GodowskiGreechie] p. 249. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ ((𝐵 ∨ℋ 𝑅) ∩ (𝐶 ∨ℋ 𝑆)) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | ||
Theorem | pjorthi 30039 | Projection components on orthocomplemented subspaces are orthogonal. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐻 ∈ Cℋ → (((projℎ‘𝐻)‘𝐴) ·ih ((projℎ‘(⊥‘𝐻))‘𝐵)) = 0) | ||
Theorem | pjch1 30040 | Property of identity projection. Remark in [Beran] p. 111. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → ((projℎ‘ ℋ)‘𝐴) = 𝐴) | ||
Theorem | pjo 30041 | The orthogonal projection. Lemma 4.4(i) of [Beran] p. 111. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘(⊥‘𝐻))‘𝐴) = (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴))) | ||
Theorem | pjcompi 30042 | Component of a projection. (Contributed by NM, 31-Oct-1999.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴) | ||
Theorem | pjidmi 30043 | A projection is idempotent. Property (ii) of [Beran] p. 109. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘((projℎ‘𝐻)‘𝐴)) = ((projℎ‘𝐻)‘𝐴) | ||
Theorem | pjadjii 30044 | A projection is self-adjoint. Property (i) of [Beran] p. 109. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (((projℎ‘𝐻)‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((projℎ‘𝐻)‘𝐵)) | ||
Theorem | pjaddii 30045 | Projection of vector sum is sum of projections. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐵)) | ||
Theorem | pjinormii 30046 | The inner product of a projection and its argument is the square of the norm of the projection. Remark in [Halmos] p. 44. (Contributed by NM, 13-Aug-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (((projℎ‘𝐻)‘𝐴) ·ih 𝐴) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) | ||
Theorem | pjmulii 30047 | Projection of (scalar) product is product of projection. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((projℎ‘𝐻)‘(𝐶 ·ℎ 𝐴)) = (𝐶 ·ℎ ((projℎ‘𝐻)‘𝐴)) | ||
Theorem | pjsubii 30048 | Projection of vector difference is difference of projections. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘(𝐴 −ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐵)) | ||
Theorem | pjsslem 30049 | Lemma for subset relationships of projections. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ ((projℎ‘(⊥‘𝐺))‘𝐴)) = (((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) | ||
Theorem | pjss2i 30050 | Subset relationship for projections. Theorem 4.5(i)->(ii) of [Beran] p. 112. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (𝐻 ⊆ 𝐺 → ((projℎ‘𝐻)‘((projℎ‘𝐺)‘𝐴)) = ((projℎ‘𝐻)‘𝐴)) | ||
Theorem | pjssmii 30051 | Projection meet property. Remark in [Kalmbach] p. 66. Also Theorem 4.5(i)->(iv) of [Beran] p. 112. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (𝐻 ⊆ 𝐺 → (((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)) | ||
Theorem | pjssge0ii 30052 | Theorem 4.5(iv)->(v) of [Beran] p. 112. (Contributed by NM, 13-Aug-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ ((((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) → 0 ≤ ((((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) ·ih 𝐴)) | ||
Theorem | pjdifnormii 30053 | Theorem 4.5(v)<->(vi) of [Beran] p. 112. (Contributed by NM, 13-Aug-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (0 ≤ ((((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) ·ih 𝐴) ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘((projℎ‘𝐺)‘𝐴))) | ||
Theorem | pjcji 30054 | The projection on a subspace join is the sum of the projections. (Contributed by NM, 1-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (𝐻 ⊆ (⊥‘𝐺) → ((projℎ‘(𝐻 ∨ℋ 𝐺))‘𝐴) = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐺)‘𝐴))) | ||
Theorem | pjadji 30055 | A projection is self-adjoint. Property (i) of [Beran] p. 109. (Contributed by NM, 6-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((projℎ‘𝐻)‘𝐵))) | ||
Theorem | pjaddi 30056 | Projection of vector sum is sum of projections. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐵))) | ||
Theorem | pjinormi 30057 | The inner product of a projection and its argument is the square of the norm of the projection. Remark in [Halmos] p. 44. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → (((projℎ‘𝐻)‘𝐴) ·ih 𝐴) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2)) | ||
Theorem | pjsubi 30058 | Projection of vector difference is difference of projections. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((projℎ‘𝐻)‘(𝐴 −ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐵))) | ||
Theorem | pjmuli 30059 | Projection of scalar product is scalar product of projection. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((projℎ‘𝐻)‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ ((projℎ‘𝐻)‘𝐵))) | ||
Theorem | pjige0i 30060 | The inner product of a projection and its argument is nonnegative. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → 0 ≤ (((projℎ‘𝐻)‘𝐴) ·ih 𝐴)) | ||
Theorem | pjige0 30061 | The inner product of a projection and its argument is nonnegative. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → 0 ≤ (((projℎ‘𝐻)‘𝐴) ·ih 𝐴)) | ||
Theorem | pjcjt2 30062 | The projection on a subspace join is the sum of the projections. (Contributed by NM, 1-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐺 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐻 ⊆ (⊥‘𝐺) → ((projℎ‘(𝐻 ∨ℋ 𝐺))‘𝐴) = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐺)‘𝐴)))) | ||
Theorem | pj0i 30063 | The projection of the zero vector. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((projℎ‘𝐻)‘0ℎ) = 0ℎ | ||
Theorem | pjch 30064 | Projection of a vector in the projection subspace. Lemma 4.4(ii) of [Beran] p. 111. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ 𝐻 ↔ ((projℎ‘𝐻)‘𝐴) = 𝐴)) | ||
Theorem | pjid 30065 | The projection of a vector in the projection subspace is itself. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻) → ((projℎ‘𝐻)‘𝐴) = 𝐴) | ||
Theorem | pjvec 30066* | The set of vectors belonging to the subspace of a projection. Part of Theorem 26.2 of [Halmos] p. 44. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → 𝐻 = {𝑥 ∈ ℋ ∣ ((projℎ‘𝐻)‘𝑥) = 𝑥}) | ||
Theorem | pjocvec 30067* | The set of vectors belonging to the orthocomplemented subspace of a projection. Second part of Theorem 27.3 of [Halmos] p. 45. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ((projℎ‘𝐻)‘𝑥) = 0ℎ}) | ||
Theorem | pjocini 30068 | Membership of projection in orthocomplement of intersection. (Contributed by NM, 21-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ (⊥‘(𝐺 ∩ 𝐻)) → ((projℎ‘𝐺)‘𝐴) ∈ (⊥‘(𝐺 ∩ 𝐻))) | ||
Theorem | pjini 30069 | Membership of projection in an intersection. (Contributed by NM, 22-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ (𝐺 ∩ 𝐻) → ((projℎ‘𝐺)‘𝐴) ∈ (𝐺 ∩ 𝐻)) | ||
Theorem | pjjsi 30070* | A sufficient condition for subspace join to be equal to subspace sum. (Contributed by NM, 29-May-2004.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ (∀𝑥 ∈ (𝐺 ∨ℋ 𝐻)((projℎ‘(⊥‘𝐺))‘𝑥) ∈ 𝐻 → (𝐺 ∨ℋ 𝐻) = (𝐺 +ℋ 𝐻)) | ||
Theorem | pjfni 30071 | Functionality of a projection. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (projℎ‘𝐻) Fn ℋ | ||
Theorem | pjrni 30072 | The range of a projection. Part of Theorem 26.2 of [Halmos] p. 44. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ran (projℎ‘𝐻) = 𝐻 | ||
Theorem | pjfoi 30073 | A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (projℎ‘𝐻): ℋ–onto→𝐻 | ||
Theorem | pjfi 30074 | The mapping of a projection. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (projℎ‘𝐻): ℋ⟶ ℋ | ||
Theorem | pjvi 30075 | The value of a projection in terms of components. (Contributed by NM, 28-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴) | ||
Theorem | pjhfo 30076 | A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻): ℋ–onto→𝐻) | ||
Theorem | pjrn 30077 | The range of a projection. Part of Theorem 26.2 of [Halmos] p. 44. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → ran (projℎ‘𝐻) = 𝐻) | ||
Theorem | pjhf 30078 | The mapping of a projection. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻): ℋ⟶ ℋ) | ||
Theorem | pjfn 30079 | Functionality of a projection. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) Fn ℋ) | ||
Theorem | pjsumi 30080 | The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘(𝐺 +ℋ 𝐻))‘𝐴) = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴)))) | ||
Theorem | pj11i 30081 | One-to-one correspondence of projection and subspace. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((projℎ‘𝐺) = (projℎ‘𝐻) ↔ 𝐺 = 𝐻) | ||
Theorem | pjdsi 30082 | Vector decomposition into sum of projections on orthogonal subspaces. (Contributed by NM, 21-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ (𝐺 ∨ℋ 𝐻) ∧ 𝐺 ⊆ (⊥‘𝐻)) → 𝐴 = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴))) | ||
Theorem | pjds3i 30083 | Vector decomposition into sum of projections on orthogonal subspaces. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((𝐴 ∈ ((𝐹 ∨ℋ 𝐺) ∨ℋ 𝐻) ∧ 𝐹 ⊆ (⊥‘𝐺)) ∧ (𝐹 ⊆ (⊥‘𝐻) ∧ 𝐺 ⊆ (⊥‘𝐻))) → 𝐴 = ((((projℎ‘𝐹)‘𝐴) +ℎ ((projℎ‘𝐺)‘𝐴)) +ℎ ((projℎ‘𝐻)‘𝐴))) | ||
Theorem | pj11 30084 | One-to-one correspondence of projection and subspace. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) → ((projℎ‘𝐺) = (projℎ‘𝐻) ↔ 𝐺 = 𝐻)) | ||
Theorem | pjmfn 30085 | Functionality of the projection function. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ projℎ Fn Cℋ | ||
Theorem | pjmf1 30086 | The projector function maps one-to-one into the set of Hilbert space operators. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ projℎ: Cℋ –1-1→( ℋ ↑m ℋ) | ||
Theorem | pjoi0 30087 | The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) ∧ 𝐺 ⊆ (⊥‘𝐻)) → (((projℎ‘𝐺)‘𝐴) ·ih ((projℎ‘𝐻)‘𝐴)) = 0) | ||
Theorem | pjoi0i 30088 | The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 1-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐺 ⊆ (⊥‘𝐻) → (((projℎ‘𝐺)‘𝐴) ·ih ((projℎ‘𝐻)‘𝐴)) = 0) | ||
Theorem | pjopythi 30089 | Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 1-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐺 ⊆ (⊥‘𝐻) → ((normℎ‘(((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴)))↑2) = (((normℎ‘((projℎ‘𝐺)‘𝐴))↑2) + ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2))) | ||
Theorem | pjopyth 30090 | Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐺 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐻 ⊆ (⊥‘𝐺) → ((normℎ‘(((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐺)‘𝐴)))↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘𝐺)‘𝐴))↑2)))) | ||
Theorem | pjnormi 30091 | The norm of the projection is less than or equal to the norm. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) | ||
Theorem | pjpythi 30092 | Pythagorean theorem for projections. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((normℎ‘𝐴)↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) | ||
Theorem | pjneli 30093 | If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴)) | ||
Theorem | pjnorm 30094 | The norm of the projection is less than or equal to the norm. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴)) | ||
Theorem | pjpyth 30095 | Pythagorean theorem for projectors. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((normℎ‘𝐴)↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2))) | ||
Theorem | pjnel 30096 | If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴))) | ||
Theorem | pjnorm2 30097 | A vector belongs to the subspace of a projection iff the norm of its projection equals its norm. This and pjch 30064 yield Theorem 26.3 of [Halmos] p. 44. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) = (normℎ‘𝐴))) | ||
Theorem | mayete3i 30098 | Mayet's equation E3. Part of Theorem 4.1 of [Mayet3] p. 1223. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐴 ⊆ (⊥‘𝐶) & ⊢ 𝐴 ⊆ (⊥‘𝐹) & ⊢ 𝐶 ⊆ (⊥‘𝐹) & ⊢ 𝐴 ⊆ (⊥‘𝐵) & ⊢ 𝐶 ⊆ (⊥‘𝐷) & ⊢ 𝐹 ⊆ (⊥‘𝐺) & ⊢ 𝑋 = ((𝐴 ∨ℋ 𝐶) ∨ℋ 𝐹) & ⊢ 𝑌 = (((𝐴 ∨ℋ 𝐵) ∩ (𝐶 ∨ℋ 𝐷)) ∩ (𝐹 ∨ℋ 𝐺)) & ⊢ 𝑍 = ((𝐵 ∨ℋ 𝐷) ∨ℋ 𝐺) ⇒ ⊢ (𝑋 ∩ 𝑌) ⊆ 𝑍 | ||
Theorem | mayetes3i 30099 | Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝐴 ⊆ (⊥‘𝐶) & ⊢ 𝐴 ⊆ (⊥‘𝐹) & ⊢ 𝐶 ⊆ (⊥‘𝐹) & ⊢ 𝐴 ⊆ (⊥‘𝐵) & ⊢ 𝐶 ⊆ (⊥‘𝐷) & ⊢ 𝐹 ⊆ (⊥‘𝐺) & ⊢ 𝑅 ⊆ (⊥‘𝑋) & ⊢ 𝑋 = ((𝐴 ∨ℋ 𝐶) ∨ℋ 𝐹) & ⊢ 𝑌 = (((𝐴 ∨ℋ 𝐵) ∩ (𝐶 ∨ℋ 𝐷)) ∩ (𝐹 ∨ℋ 𝐺)) & ⊢ 𝑍 = ((𝐵 ∨ℋ 𝐷) ∨ℋ 𝐺) ⇒ ⊢ ((𝑋 ∨ℋ 𝑅) ∩ 𝑌) ⊆ (𝑍 ∨ℋ 𝑅) | ||
Note on operators. Unlike some authors, we use the term "operator" to mean any function from ℋ to ℋ. This is the definition of operator in [Hughes] p. 14, the definition of operator in [AkhiezerGlazman] p. 30, and the definition of operator in [Goldberg] p. 10. For Reed and Simon, an operator is linear (definition of operator in [ReedSimon] p. 2). For Halmos, an operator is bounded and linear (definition of operator in [Halmos] p. 35). For Kalmbach and Beran, an operator is continuous and linear (definition of operator in [Kalmbach] p. 353; definition of operator in [Beran] p. 99). Note that "bounded and linear" and "continuous and linear" are equivalent by lncnbd 30408. | ||
Definition | df-hosum 30100* | Define the sum of two Hilbert space operators. Definition of [Beran] p. 111. (Contributed by NM, 9-Nov-2000.) (New usage is discouraged.) |
⊢ +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |