| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-acos | Structured version Visualization version GIF version | ||
| Description: Define the arccosine function. See also remarks for df-asin 26825. Since we define arccos in terms of arcsin, it shares the same branch points and cuts, namely (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| df-acos | ⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cacos 26823 | . 2 class arccos | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11125 | . . 3 class ℂ | |
| 4 | cpi 16080 | . . . . 5 class π | |
| 5 | c2 12293 | . . . . 5 class 2 | |
| 6 | cdiv 11892 | . . . . 5 class / | |
| 7 | 4, 5, 6 | co 7403 | . . . 4 class (π / 2) |
| 8 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 9 | casin 26822 | . . . . 5 class arcsin | |
| 10 | 8, 9 | cfv 6530 | . . . 4 class (arcsin‘𝑥) |
| 11 | cmin 11464 | . . . 4 class − | |
| 12 | 7, 10, 11 | co 7403 | . . 3 class ((π / 2) − (arcsin‘𝑥)) |
| 13 | 2, 3, 12 | cmpt 5201 | . 2 class (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) |
| 14 | 1, 13 | wceq 1540 | 1 wff arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: acosf 26834 acosval 26843 dvacos 37675 |
| Copyright terms: Public domain | W3C validator |