| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-asin | Structured version Visualization version GIF version | ||
| Description: Define the arcsine function. Because sin is not a one-to-one function, the literal inverse ◡sin is not a function. Rather than attempt to find the right domain on which to restrict sin in order to get a total function, we just define it in terms of log, which we already know is total (except at 0). There are branch points at -1 and 1 (at which the function is defined), and branch cuts along the real line not between -1 and 1, which is to say (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| df-asin | ⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | casin 26905 | . 2 class arcsin | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11153 | . . 3 class ℂ | |
| 4 | ci 11157 | . . . . 5 class i | |
| 5 | 4 | cneg 11493 | . . . 4 class -i |
| 6 | 2 | cv 1539 | . . . . . . 7 class 𝑥 |
| 7 | cmul 11160 | . . . . . . 7 class · | |
| 8 | 4, 6, 7 | co 7431 | . . . . . 6 class (i · 𝑥) |
| 9 | c1 11156 | . . . . . . . 8 class 1 | |
| 10 | c2 12321 | . . . . . . . . 9 class 2 | |
| 11 | cexp 14102 | . . . . . . . . 9 class ↑ | |
| 12 | 6, 10, 11 | co 7431 | . . . . . . . 8 class (𝑥↑2) |
| 13 | cmin 11492 | . . . . . . . 8 class − | |
| 14 | 9, 12, 13 | co 7431 | . . . . . . 7 class (1 − (𝑥↑2)) |
| 15 | csqrt 15272 | . . . . . . 7 class √ | |
| 16 | 14, 15 | cfv 6561 | . . . . . 6 class (√‘(1 − (𝑥↑2))) |
| 17 | caddc 11158 | . . . . . 6 class + | |
| 18 | 8, 16, 17 | co 7431 | . . . . 5 class ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) |
| 19 | clog 26596 | . . . . 5 class log | |
| 20 | 18, 19 | cfv 6561 | . . . 4 class (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) |
| 21 | 5, 20, 7 | co 7431 | . . 3 class (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))) |
| 22 | 2, 3, 21 | cmpt 5225 | . 2 class (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) |
| 23 | 1, 22 | wceq 1540 | 1 wff arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: asinf 26915 asinval 26925 dvasin 37711 |
| Copyright terms: Public domain | W3C validator |