MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acosval Structured version   Visualization version   GIF version

Theorem acosval 26793
Description: Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
acosval (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴)))

Proof of Theorem acosval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . 3 (𝑥 = 𝐴 → (arcsin‘𝑥) = (arcsin‘𝐴))
21oveq2d 7403 . 2 (𝑥 = 𝐴 → ((π / 2) − (arcsin‘𝑥)) = ((π / 2) − (arcsin‘𝐴)))
3 df-acos 26776 . 2 arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥)))
4 ovex 7420 . 2 ((π / 2) − (arcsin‘𝐴)) ∈ V
52, 3, 4fvmpt 6968 1 (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  cc 11066  cmin 11405   / cdiv 11835  2c2 12241  πcpi 16032  arcsincasin 26772  arccoscacos 26773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-acos 26776
This theorem is referenced by:  acosneg  26797  cosacos  26800  acoscos  26803  acos1  26805  acosbnd  26810  acosrecl  26813  sinacos  26815
  Copyright terms: Public domain W3C validator