MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acosval Structured version   Visualization version   GIF version

Theorem acosval 26765
Description: Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
acosval (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴)))

Proof of Theorem acosval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6884 . . 3 (𝑥 = 𝐴 → (arcsin‘𝑥) = (arcsin‘𝐴))
21oveq2d 7420 . 2 (𝑥 = 𝐴 → ((π / 2) − (arcsin‘𝑥)) = ((π / 2) − (arcsin‘𝐴)))
3 df-acos 26748 . 2 arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥)))
4 ovex 7437 . 2 ((π / 2) − (arcsin‘𝐴)) ∈ V
52, 3, 4fvmpt 6991 1 (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6536  (class class class)co 7404  cc 11107  cmin 11445   / cdiv 11872  2c2 12268  πcpi 16013  arcsincasin 26744  arccoscacos 26745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-acos 26748
This theorem is referenced by:  acosneg  26769  cosacos  26772  acoscos  26775  acos1  26777  acosbnd  26782  acosrecl  26785  sinacos  26787
  Copyright terms: Public domain W3C validator