MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acosval Structured version   Visualization version   GIF version

Theorem acosval 26385
Description: Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
acosval (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴)))

Proof of Theorem acosval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . 3 (𝑥 = 𝐴 → (arcsin‘𝑥) = (arcsin‘𝐴))
21oveq2d 7424 . 2 (𝑥 = 𝐴 → ((π / 2) − (arcsin‘𝑥)) = ((π / 2) − (arcsin‘𝐴)))
3 df-acos 26368 . 2 arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥)))
4 ovex 7441 . 2 ((π / 2) − (arcsin‘𝐴)) ∈ V
52, 3, 4fvmpt 6998 1 (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cfv 6543  (class class class)co 7408  cc 11107  cmin 11443   / cdiv 11870  2c2 12266  πcpi 16009  arcsincasin 26364  arccoscacos 26365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-acos 26368
This theorem is referenced by:  acosneg  26389  cosacos  26392  acoscos  26395  acos1  26397  acosbnd  26402  acosrecl  26405  sinacos  26407
  Copyright terms: Public domain W3C validator