MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acosval Structured version   Visualization version   GIF version

Theorem acosval 26818
Description: Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
acosval (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴)))

Proof of Theorem acosval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑥 = 𝐴 → (arcsin‘𝑥) = (arcsin‘𝐴))
21oveq2d 7362 . 2 (𝑥 = 𝐴 → ((π / 2) − (arcsin‘𝑥)) = ((π / 2) − (arcsin‘𝐴)))
3 df-acos 26801 . 2 arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥)))
4 ovex 7379 . 2 ((π / 2) − (arcsin‘𝐴)) ∈ V
52, 3, 4fvmpt 6929 1 (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11001  cmin 11341   / cdiv 11771  2c2 12177  πcpi 15970  arcsincasin 26797  arccoscacos 26798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-acos 26801
This theorem is referenced by:  acosneg  26822  cosacos  26825  acoscos  26828  acos1  26830  acosbnd  26835  acosrecl  26838  sinacos  26840
  Copyright terms: Public domain W3C validator