| Metamath
Proof Explorer Theorem List (p. 264 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ulm2 26301* | Simplify ulmval 26296 when 𝐹 and 𝐺 are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) & ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
| Theorem | ulmi 26302* | The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) | ||
| Theorem | ulmclm 26303* | A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) | ||
| Theorem | ulmres 26304 | A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ (𝐹 ↾ 𝑊)(⇝𝑢‘𝑆)𝐺)) | ||
| Theorem | ulmshftlem 26305* | Lemma for ulmshft 26306. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑊 ↦ (𝐹‘(𝑛 − 𝐾)))) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐻(⇝𝑢‘𝑆)𝐺)) | ||
| Theorem | ulmshft 26306* | A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑊 ↦ (𝐹‘(𝑛 − 𝐾)))) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 𝐻(⇝𝑢‘𝑆)𝐺)) | ||
| Theorem | ulm0 26307 | Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) ⇒ ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) | ||
| Theorem | ulmuni 26308 | A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
| ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) | ||
| Theorem | ulmdm 26309 | Two ways to express that a function has a limit. (The expression ((⇝𝑢‘𝑆)‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 5-Jul-2017.) |
| ⊢ (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ 𝐹(⇝𝑢‘𝑆)((⇝𝑢‘𝑆)‘𝐹)) | ||
| Theorem | ulmcaulem 26310* | Lemma for ulmcau 26311 and ulmcau2 26312: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 15329. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) | ||
| Theorem | ulmcau 26311* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗 ≤ 𝑘 the functions 𝐹(𝑘) and 𝐹(𝑗) are uniformly within 𝑥 of each other on 𝑆. This is the four-quantifier version, see ulmcau2 26312 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) | ||
| Theorem | ulmcau2 26312* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗 ≤ 𝑘, 𝑚 the functions 𝐹(𝑘) and 𝐹(𝑚) are uniformly within 𝑥 of each other on 𝑆. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) | ||
| Theorem | ulmss 26313* | A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))(⇝𝑢‘𝑇)(𝐺 ↾ 𝑇)) | ||
| Theorem | ulmbdd 26314* | A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘((𝐹‘𝑘)‘𝑧)) ≤ 𝑥) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝐺‘𝑧)) ≤ 𝑥) | ||
| Theorem | ulmcn 26315 | A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(𝑆–cn→ℂ)) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | ulmdvlem1 26316* | Lemma for ulmdv 26319. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑈 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑈 < 𝑊) & ⊢ ((𝜑 ∧ 𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → (abs‘(𝑌 − 𝐶)) < 𝑈) & ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝜓) → ∀𝑚 ∈ (ℤ≥‘𝑁)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑁))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑅 / 2) / 2)) & ⊢ ((𝜑 ∧ 𝜓) → (abs‘(((𝑆 D (𝐹‘𝑁))‘𝐶) − (𝐻‘𝐶))) < (𝑅 / 2)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑌 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → 𝑌 ≠ 𝐶) & ⊢ ((𝜑 ∧ 𝜓) → ((abs‘(𝑌 − 𝐶)) < 𝑊 → (abs‘(((((𝐹‘𝑁)‘𝑌) − ((𝐹‘𝑁)‘𝐶)) / (𝑌 − 𝐶)) − ((𝑆 D (𝐹‘𝑁))‘𝐶))) < ((𝑅 / 2) / 2))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (abs‘((((𝐺‘𝑌) − (𝐺‘𝐶)) / (𝑌 − 𝐶)) − (𝐻‘𝐶))) < 𝑅) | ||
| Theorem | ulmdvlem2 26317* | Lemma for ulmdv 26319. (Contributed by Mario Carneiro, 8-May-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | ||
| Theorem | ulmdvlem3 26318* | Lemma for ulmdv 26319. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧(𝑆 D 𝐺)(𝐻‘𝑧)) | ||
| Theorem | ulmdv 26319* | If 𝐹 is a sequence of differentiable functions on 𝑋 which converge pointwise to 𝐺, and the derivatives of 𝐹(𝑛) converge uniformly to 𝐻, then 𝐺 is differentiable with derivative 𝐻. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) | ||
| Theorem | mtest 26320* | The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) & ⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢‘𝑆)) | ||
| Theorem | mtestbdd 26321* | Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) & ⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝑇‘𝑧)) ≤ 𝑥) | ||
| Theorem | mbfulm 26322 | A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25576.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
| Theorem | iblulm 26323 | A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐿1) | ||
| Theorem | itgulm 26324* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺‘𝑥) d𝑥) | ||
| Theorem | itgulm2 26325* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ 𝐿1) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ 𝐴))(⇝𝑢‘𝑆)(𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝑆 ↦ 𝐵) ∈ 𝐿1 ∧ (𝑘 ∈ 𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥)) | ||
| Theorem | pserval 26326* | Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) ⇒ ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) | ||
| Theorem | pserval2 26327* | Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) ⇒ ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) | ||
| Theorem | psergf 26328* | The sequence of terms in the infinite sequence defining a power series for fixed 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) | ||
| Theorem | radcnvlem1 26329* | Lemma for radcnvlt1 26334, radcnvle 26336. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋, even if the terms in the sequence are multiplied by 𝑛. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) & ⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ ) | ||
| Theorem | radcnvlem2 26330* | Lemma for radcnvlt1 26334, radcnvle 26336. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ) | ||
| Theorem | radcnvlem3 26331* | Lemma for radcnvlt1 26334, radcnvle 26336. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges at 𝑋. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) | ||
| Theorem | radcnv0 26332* | Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) ⇒ ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) | ||
| Theorem | radcnvcl 26333* | The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ⇒ ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) | ||
| Theorem | radcnvlt1 26334* | If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges absolutely at 𝑋, and also converges when the series is multiplied by 𝑛. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) & ⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) ⇒ ⊢ (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ )) | ||
| Theorem | radcnvlt2 26335* | If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) | ||
| Theorem | radcnvle 26336* | If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (abs‘𝑋) ≤ 𝑅) | ||
| Theorem | dvradcnv 26337* | The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋↑𝑛))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ ) | ||
| Theorem | pserulm 26338* | If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) | ||
| Theorem | psercn2 26339* | Since by pserulm 26338 the series converges uniformly, it is also continuous by ulmcn 26315. (Contributed by Mario Carneiro, 3-Mar-2015.) Avoid ax-mulf 11155. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | psercn2OLD 26340* | Obsolete version of psercn2 26339 as of 16-Apr-2025. (Contributed by Mario Carneiro, 3-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | psercnlem2 26341* | Lemma for psercn 26343. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) | ||
| Theorem | psercnlem1 26342* | Lemma for psercn 26343. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | ||
| Theorem | psercn 26343* | An infinite series converges to a continuous function on the open disk of radius 𝑅, where 𝑅 is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | pserdvlem1 26344* | Lemma for pserdv 26346. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) | ||
| Theorem | pserdvlem2 26345* | Lemma for pserdv 26346. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | ||
| Theorem | pserdv 26346* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | ||
| Theorem | pserdv2 26347* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) | ||
| Theorem | abelthlem1 26348* | Lemma for abelth 26358. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) | ||
| Theorem | abelthlem2 26349* | Lemma for abelth 26358. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⇒ ⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))) | ||
| Theorem | abelthlem3 26350* | Lemma for abelth 26358. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) | ||
| Theorem | abelthlem4 26351* | Lemma for abelth 26358. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) | ||
| Theorem | abelthlem5 26352* | Lemma for abelth 26358. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) | ||
| Theorem | abelthlem6 26353* | Lemma for abelth 26358. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) | ||
| Theorem | abelthlem7a 26354* | Lemma for abelth 26358. (Contributed by Mario Carneiro, 8-May-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) ⇒ ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) | ||
| Theorem | abelthlem7 26355* | Lemma for abelth 26358. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅) & ⊢ (𝜑 → (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) ⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑋)) < ((𝑀 + 1) · 𝑅)) | ||
| Theorem | abelthlem8 26356* | Lemma for abelth 26358. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
| Theorem | abelthlem9 26357* | Lemma for abelth 26358. By adjusting the constant term, we can assume that the entire series converges to 0. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
| Theorem | abelth 26358* | Abel's theorem. If the power series Σ𝑛 ∈ ℕ0𝐴(𝑛)(𝑥↑𝑛) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle 𝑆 (note that the 𝑀 = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on 𝑆 ∖ {1} follows more generally from psercn 26343.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | abelth2 26359* | Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((0[,]1)–cn→ℂ)) | ||
| Theorem | efcn 26360 | The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| ⊢ exp ∈ (ℂ–cn→ℂ) | ||
| Theorem | sincn 26361 | Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
| ⊢ sin ∈ (ℂ–cn→ℂ) | ||
| Theorem | coscn 26362 | Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
| ⊢ cos ∈ (ℂ–cn→ℂ) | ||
| Theorem | reeff1olem 26363* | Lemma for reeff1o 26364. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) | ||
| Theorem | reeff1o 26364 | The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | ||
| Theorem | reefiso 26365 | The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.) |
| ⊢ (exp ↾ ℝ) Isom < , < (ℝ, ℝ+) | ||
| Theorem | efcvx 26366 | The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵)))) | ||
| Theorem | reefgim 26367 | The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) ⇒ ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) | ||
| Theorem | pilem1 26368 | Lemma for pire 26373, pigt2lt4 26371 and sinpi 26372. (Contributed by Mario Carneiro, 9-May-2014.) |
| ⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0)) | ||
| Theorem | pilem2 26369 | Lemma for pire 26373, pigt2lt4 26371 and sinpi 26372. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ (2(,)4)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (sin‘𝐴) = 0) & ⊢ (𝜑 → (sin‘𝐵) = 0) ⇒ ⊢ (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵) | ||
| Theorem | pilem3 26370 | Lemma for pire 26373, pigt2lt4 26371 and sinpi 26372. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) (Proof shortened by BJ, 30-Jun-2022.) |
| ⊢ (π ∈ (2(,)4) ∧ (sin‘π) = 0) | ||
| Theorem | pigt2lt4 26371 | π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| ⊢ (2 < π ∧ π < 4) | ||
| Theorem | sinpi 26372 | The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ (sin‘π) = 0 | ||
| Theorem | pire 26373 | π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ π ∈ ℝ | ||
| Theorem | picn 26374 | π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ π ∈ ℂ | ||
| Theorem | pipos 26375 | π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| ⊢ 0 < π | ||
| Theorem | pine0 26376 | π is nonzero. (Contributed by SN, 25-Apr-2025.) |
| ⊢ π ≠ 0 | ||
| Theorem | pirp 26377 | π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ π ∈ ℝ+ | ||
| Theorem | negpicn 26378 | -π is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -π ∈ ℂ | ||
| Theorem | sinhalfpilem 26379 | Lemma for sinhalfpi 26384 and coshalfpi 26385. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0) | ||
| Theorem | halfpire 26380 | π / 2 is real. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (π / 2) ∈ ℝ | ||
| Theorem | neghalfpire 26381 | -π / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -(π / 2) ∈ ℝ | ||
| Theorem | neghalfpirx 26382 | -π / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -(π / 2) ∈ ℝ* | ||
| Theorem | pidiv2halves 26383 | Adding π / 2 to itself gives π. See 2halves 12407. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ((π / 2) + (π / 2)) = π | ||
| Theorem | sinhalfpi 26384 | The sine of π / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ (sin‘(π / 2)) = 1 | ||
| Theorem | coshalfpi 26385 | The cosine of π / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ (cos‘(π / 2)) = 0 | ||
| Theorem | cosneghalfpi 26386 | The cosine of -π / 2 is zero. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (cos‘-(π / 2)) = 0 | ||
| Theorem | efhalfpi 26387 | The exponential of iπ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.) |
| ⊢ (exp‘(i · (π / 2))) = i | ||
| Theorem | cospi 26388 | The cosine of π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ (cos‘π) = -1 | ||
| Theorem | efipi 26389 | The exponential of i · π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ (exp‘(i · π)) = -1 | ||
| Theorem | eulerid 26390 | Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| ⊢ ((exp‘(i · π)) + 1) = 0 | ||
| Theorem | sin2pi 26391 | The sine of 2π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ (sin‘(2 · π)) = 0 | ||
| Theorem | cos2pi 26392 | The cosine of 2π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ (cos‘(2 · π)) = 1 | ||
| Theorem | ef2pi 26393 | The exponential of 2πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
| ⊢ (exp‘(i · (2 · π))) = 1 | ||
| Theorem | ef2kpi 26394 | If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
| ⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1) | ||
| Theorem | efper 26395 | The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 · π)) · 𝐾))) = (exp‘𝐴)) | ||
| Theorem | sinperlem 26396 | Lemma for sinper 26397 and cosper 26398. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷)) & ⊢ ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹‘𝐴)) | ||
| Theorem | sinper 26397 | The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) = (sin‘𝐴)) | ||
| Theorem | cosper 26398 | The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) = (cos‘𝐴)) | ||
| Theorem | sin2kpi 26399 | If 𝐾 is an integer, then the sine of 2𝐾π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) = 0) | ||
| Theorem | cos2kpi 26400 | If 𝐾 is an integer, then the cosine of 2𝐾π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |