Home | Metamath
Proof Explorer Theorem List (p. 264 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dchrmul 26301 | Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ · = (+g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 ∘f · 𝑌)) | ||
Theorem | dchrmulcl 26302 | Closure of the group operation on Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ · = (+g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐷) | ||
Theorem | dchrn0 26303 | A Dirichlet character is nonzero on the units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) | ||
Theorem | dchr1cl 26304* | Closure of the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → 1 ∈ 𝐷) | ||
Theorem | dchrmulid2 26305* | Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) & ⊢ · = (+g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) | ||
Theorem | dchrinvcl 26306* | Closure of the group inverse operation on Dirichlet characters. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) & ⊢ · = (+g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ 𝐾 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0)) ⇒ ⊢ (𝜑 → (𝐾 ∈ 𝐷 ∧ (𝐾 · 𝑋) = 1 )) | ||
Theorem | dchrabl 26307 | The set of Dirichlet characters is an Abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) | ||
Theorem | dchrfi 26308 | The group of Dirichlet characters is a finite group. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐷 ∈ Fin) | ||
Theorem | dchrghm 26309 | A Dirichlet character restricted to the unit group of ℤ/nℤ is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) & ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) | ||
Theorem | dchr1 26310 | Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ( 1 ‘𝐴) = 1) | ||
Theorem | dchreq 26311* | A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘))) | ||
Theorem | dchrresb 26312 | A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((𝑋 ↾ 𝑈) = (𝑌 ↾ 𝑈) ↔ 𝑋 = 𝑌)) | ||
Theorem | dchrabs 26313 | A Dirichlet character takes values on the unit circle. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (abs‘(𝑋‘𝐴)) = 1) | ||
Theorem | dchrinv 26314 | The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of 𝑋 are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) = (∗ ∘ 𝑋)) | ||
Theorem | dchrabs2 26315 | A Dirichlet character takes values inside the unit circle. (Contributed by Mario Carneiro, 3-May-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝑋‘𝐴)) ≤ 1) | ||
Theorem | dchr1re 26316 | The principal Dirichlet character is a real character. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → 1 :𝐵⟶ℝ) | ||
Theorem | dchrptlem1 26317* | Lemma for dchrpt 26320. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ 1 = (1r‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ≠ 1 ) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) & ⊢ · = (.g‘𝐻) & ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) & ⊢ (𝜑 → 𝐻dom DProd 𝑆) & ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) & ⊢ 𝑃 = (𝐻dProj𝑆) & ⊢ 𝑂 = (od‘𝐻) & ⊢ 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) & ⊢ (𝜑 → 𝐼 ∈ dom 𝑊) & ⊢ (𝜑 → ((𝑃‘𝐼)‘𝐴) ≠ 1 ) & ⊢ 𝑋 = (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝑢) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) ⇒ ⊢ (((𝜑 ∧ 𝐶 ∈ 𝑈) ∧ (𝑀 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐶) = (𝑀 · (𝑊‘𝐼)))) → (𝑋‘𝐶) = (𝑇↑𝑀)) | ||
Theorem | dchrptlem2 26318* | Lemma for dchrpt 26320. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ 1 = (1r‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ≠ 1 ) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) & ⊢ · = (.g‘𝐻) & ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) & ⊢ (𝜑 → 𝐻dom DProd 𝑆) & ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) & ⊢ 𝑃 = (𝐻dProj𝑆) & ⊢ 𝑂 = (od‘𝐻) & ⊢ 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) & ⊢ (𝜑 → 𝐼 ∈ dom 𝑊) & ⊢ (𝜑 → ((𝑃‘𝐼)‘𝐴) ≠ 1 ) & ⊢ 𝑋 = (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝑢) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) | ||
Theorem | dchrptlem3 26319* | Lemma for dchrpt 26320. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ 1 = (1r‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ≠ 1 ) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) & ⊢ · = (.g‘𝐻) & ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) & ⊢ (𝜑 → 𝐻dom DProd 𝑆) & ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) | ||
Theorem | dchrpt 26320* | For any element other than 1, there is a Dirichlet character that is not one at the given element. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ 1 = (1r‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ≠ 1 ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) | ||
Theorem | dchrsum2 26321* | An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ 𝑈 = (Unit‘𝑍) ⇒ ⊢ (𝜑 → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) | ||
Theorem | dchrsum 26322* | An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ 𝐵 = (Base‘𝑍) ⇒ ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) | ||
Theorem | sumdchr2 26323* | Lemma for sumdchr 26325. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 1 = (1r‘𝑍) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝐷 (𝑥‘𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0)) | ||
Theorem | dchrhash 26324 | There are exactly ϕ(𝑁) Dirichlet characters modulo 𝑁. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁)) | ||
Theorem | sumdchr 26325* | An orthogonality relation for Dirichlet characters: the sum of 𝑥(𝐴) for fixed 𝐴 and all 𝑥 is 0 if 𝐴 = 1 and ϕ(𝑛) otherwise. Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 1 = (1r‘𝑍) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝐷 (𝑥‘𝐴) = if(𝐴 = 1 , (ϕ‘𝑁), 0)) | ||
Theorem | dchr2sum 26326* | An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) | ||
Theorem | sum2dchr 26327* | An orthogonality relation for Dirichlet characters: the sum of 𝑥(𝐴) for fixed 𝐴 and all 𝑥 is 0 if 𝐴 = 1 and ϕ(𝑛) otherwise. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝐷 ((𝑥‘𝐴) · (∗‘(𝑥‘𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0)) | ||
Theorem | bcctr 26328 | Value of the central binomial coefficient. (Contributed by Mario Carneiro, 13-Mar-2014.) |
⊢ (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))) | ||
Theorem | pcbcctr 26329* | Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) | ||
Theorem | bcmono 26330 | The binomial coefficient is monotone in its second argument, up to the midway point. (Contributed by Mario Carneiro, 5-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → (𝑁C𝐴) ≤ (𝑁C𝐵)) | ||
Theorem | bcmax 26331 | The binomial coefficient takes its maximum value at the center. (Contributed by Mario Carneiro, 5-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁)) | ||
Theorem | bcp1ctr 26332 | Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1))))) | ||
Theorem | bclbnd 26333 | A bound on the binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁)) | ||
Theorem | efexple 26334 | Convert a bound on a power to a bound on the exponent. (Contributed by Mario Carneiro, 11-Mar-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴↑𝑁) ≤ 𝐵 ↔ 𝑁 ≤ (⌊‘((log‘𝐵) / (log‘𝐴))))) | ||
Theorem | bpos1lem 26335* | Lemma for bpos1 26336. (Contributed by Mario Carneiro, 12-Mar-2014.) |
⊢ (∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁)) → 𝜑) & ⊢ (𝑁 ∈ (ℤ≥‘𝑃) → 𝜑) & ⊢ 𝑃 ∈ ℙ & ⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 · 2) = 𝐵 & ⊢ 𝐴 < 𝑃 & ⊢ (𝑃 < 𝐵 ∨ 𝑃 = 𝐵) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝐴) → 𝜑) | ||
Theorem | bpos1 26336* | Bertrand's postulate, checked numerically for 𝑁 ≤ 64, using the prime sequence 2, 3, 5, 7, 13, 23, 43, 83. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ≤ ;64) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) | ||
Theorem | bposlem1 26337 | An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁)) | ||
Theorem | bposlem2 26338 | There are no odd primes in the range (2𝑁 / 3, 𝑁] dividing the 𝑁-th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 2 < 𝑃) & ⊢ (𝜑 → ((2 · 𝑁) / 3) < 𝑃) & ⊢ (𝜑 → 𝑃 ≤ 𝑁) ⇒ ⊢ (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0) | ||
Theorem | bposlem3 26339* | Lemma for bpos 26346. Since the binomial coefficient does not have any primes in the range (2𝑁 / 3, 𝑁] or (2𝑁, +∞) by bposlem2 26338 and prmfac1 16354, respectively, and it does not have any in the range (𝑁, 2𝑁] by hypothesis, the product of the primes up through 2𝑁 / 3 must be sufficient to compose the whole binomial coefficient. (Contributed by Mario Carneiro, 13-Mar-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘5)) & ⊢ (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1)) & ⊢ 𝐾 = (⌊‘((2 · 𝑁) / 3)) ⇒ ⊢ (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁)) | ||
Theorem | bposlem4 26340* | Lemma for bpos 26346. (Contributed by Mario Carneiro, 13-Mar-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘5)) & ⊢ (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1)) & ⊢ 𝐾 = (⌊‘((2 · 𝑁) / 3)) & ⊢ 𝑀 = (⌊‘(√‘(2 · 𝑁))) ⇒ ⊢ (𝜑 → 𝑀 ∈ (3...𝐾)) | ||
Theorem | bposlem5 26341* | Lemma for bpos 26346. Bound the product of all small primes in the binomial coefficient. (Contributed by Mario Carneiro, 15-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘5)) & ⊢ (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1)) & ⊢ 𝐾 = (⌊‘((2 · 𝑁) / 3)) & ⊢ 𝑀 = (⌊‘(√‘(2 · 𝑁))) ⇒ ⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2))) | ||
Theorem | bposlem6 26342* | Lemma for bpos 26346. By using the various bounds at our disposal, arrive at an inequality that is false for 𝑁 large enough. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Wolf Lammen, 12-Sep-2020.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘5)) & ⊢ (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1)) & ⊢ 𝐾 = (⌊‘((2 · 𝑁) / 3)) & ⊢ 𝑀 = (⌊‘(√‘(2 · 𝑁))) ⇒ ⊢ (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5)))) | ||
Theorem | bposlem7 26343* | Lemma for bpos 26346. The function 𝐹 is decreasing. (Contributed by Mario Carneiro, 13-Mar-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛))))) & ⊢ 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (e↑2) ≤ 𝐴) & ⊢ (𝜑 → (e↑2) ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 → (𝐹‘𝐵) < (𝐹‘𝐴))) | ||
Theorem | bposlem8 26344 | Lemma for bpos 26346. Evaluate 𝐹(64) and show it is less than log2. (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛))))) & ⊢ 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) ⇒ ⊢ ((𝐹‘;64) ∈ ℝ ∧ (𝐹‘;64) < (log‘2)) | ||
Theorem | bposlem9 26345* | Lemma for bpos 26346. Derive a contradiction. (Contributed by Mario Carneiro, 14-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛))))) & ⊢ 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ;64 < 𝑁) & ⊢ (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | bpos 26346* | Bertrand's postulate: there is a prime between 𝑁 and 2𝑁 for every positive integer 𝑁. This proof follows Erdős's method, for the most part, but with some refinements due to Shigenori Tochiori to save us some calculations of large primes. See http://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate for an overview of the proof strategy. This is Metamath 100 proof #98. (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) | ||
If the congruence ((𝑥↑2) mod 𝑝) = (𝑛 mod 𝑝) has a solution we say that 𝑛 is a quadratic residue mod 𝑝. If the congruence has no solution we say that 𝑛 is a quadratic nonresidue mod 𝑝, see definition in [ApostolNT] p. 178. The Legendre symbol (𝑛 /L 𝑝) is defined in a way that its value is 1 if 𝑛 is a quadratic residue mod 𝑝 and -1 if 𝑛 is a quadratic nonresidue mod 𝑝 (and 0 if 𝑝 divides 𝑛), see lgsqr 26404. Originally, the Legendre symbol (𝑁 /L 𝑃) was defined for odd primes 𝑃 only (and arbitrary integers 𝑁) by Adrien-Marie Legendre in 1798, see definition in [ApostolNT] p. 179. It was generalized to be defined for any positive odd integer by Carl Gustav Jacob Jacobi in 1837 (therefore called "Jacobi symbol" since then), see definition in [ApostolNT] p. 188. Finally, it was generalized to be defined for any integer by Leopold Kronecker in 1885 (therefore called "Kronecker symbol" since then). The definition df-lgs 26348 for the "Legendre symbol" /L is actually the definition of the "Kronecker symbol". Since only one definition (and one class symbol) are provided in set.mm, the names "Legendre symbol", "Jacobi symbol" and "Kronecker symbol" are used synonymously for /L, but mostly it is called "Legendre symbol", even if it is used in the context of a "Jacobi symbol" or "Kronecker symbol". | ||
Syntax | clgs 26347 | Extend class notation with the Legendre symbol function. |
class /L | ||
Definition | df-lgs 26348* | Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))) | ||
Theorem | zabsle1 26349 | {-1, 0, 1} is the set of all integers with absolute value at most 1. (Contributed by AV, 13-Jul-2021.) |
⊢ (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1)) | ||
Theorem | lgslem1 26350 | When 𝑎 is coprime to the prime 𝑝, 𝑎↑((𝑝 − 1) / 2) is equivalent mod 𝑝 to 1 or -1, and so adding 1 makes it equivalent to 0 or 2. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2}) | ||
Theorem | lgslem2 26351 | The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) | ||
Theorem | lgslem3 26352* | The set 𝑍 of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑍) → (𝐴 · 𝐵) ∈ 𝑍) | ||
Theorem | lgslem4 26353* | Lemma for lgsfcl2 26356. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.) |
⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) | ||
Theorem | lgsval 26354* | Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))) | ||
Theorem | lgsfval 26355* | Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ (𝑀 ∈ ℕ → (𝐹‘𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1)) | ||
Theorem | lgsfcl2 26356* | The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 26349). (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) & ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) | ||
Theorem | lgscllem 26357* | The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) & ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | ||
Theorem | lgsfcl 26358* | Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) | ||
Theorem | lgsfle1 26359* | The function 𝐹 has magnitude less or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑀 ∈ ℕ) → (abs‘(𝐹‘𝑀)) ≤ 1) | ||
Theorem | lgsval2lem 26360* | Lemma for lgsval2 26366. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) | ||
Theorem | lgsval4lem 26361* | Lemma for lgsval4 26370. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) | ||
Theorem | lgscl2 26362* | The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | ||
Theorem | lgs0 26363 | The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0)) | ||
Theorem | lgscl 26364 | The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | ||
Theorem | lgsle1 26365 | The Legendre symbol has absolute value less than or equal to 1. Together with lgscl 26364 this implies that it takes values in {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1) | ||
Theorem | lgsval2 26366 | The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime 2). (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 /L 𝑃) = if(𝑃 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))) | ||
Theorem | lgs2 26367 | The Legendre symbol at 2. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))) | ||
Theorem | lgsval3 26368 | The Legendre symbol at an odd prime (this is the traditional domain of the Legendre symbol). (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) | ||
Theorem | lgsvalmod 26369 | The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, see also lgsqr 26404. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | ||
Theorem | lgsval4 26370* | Restate lgsval 26354 for nonzero 𝑁, where the function 𝐹 has been abbreviated into a self-referential expression taking the value of /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) | ||
Theorem | lgsfcl3 26371* | Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) | ||
Theorem | lgsval4a 26372* | Same as lgsval4 26370 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) | ||
Theorem | lgscl1 26373 | The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ {-1, 0, 1}) | ||
Theorem | lgsneg 26374 | The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) | ||
Theorem | lgsneg1 26375 | The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) | ||
Theorem | lgsmod 26376 | The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁)) | ||
Theorem | lgsdilem 26377 | Lemma for lgsdi 26387 and lgsdir 26385: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) | ||
Theorem | lgsdir2lem1 26378 | Lemma for lgsdir2 26383. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5)) | ||
Theorem | lgsdir2lem2 26379 | Lemma for lgsdir2 26383. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))) & ⊢ 𝑀 = (𝐾 + 1) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑁 ∈ 𝑆 ⇒ ⊢ (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))) | ||
Theorem | lgsdir2lem3 26380 | Lemma for lgsdir2 26383. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})) | ||
Theorem | lgsdir2lem4 26381 | Lemma for lgsdir2 26383. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7})) | ||
Theorem | lgsdir2lem5 26382 | Lemma for lgsdir2 26383. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7}) | ||
Theorem | lgsdir2 26383 | The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2))) | ||
Theorem | lgsdirprm 26384 | The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) | ||
Theorem | lgsdir 26385 | The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). Together with lgsqr 26404 this implies that the product of two quadratic residues or nonresidues is a residue, and the product of a residue and a nonresidue is a nonresidue. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) | ||
Theorem | lgsdilem2 26386* | Lemma for lgsdi 26387. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)) ⇒ ⊢ (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁)))) | ||
Theorem | lgsdi 26387 | The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) | ||
Theorem | lgsne0 26388 | The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) | ||
Theorem | lgsabs1 26389 | The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) | ||
Theorem | lgssq 26390 | The Legendre symbol at a square is equal to 1. Together with lgsmod 26376 this implies that the Legendre symbol takes value 1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1) | ||
Theorem | lgssq2 26391 | The Legendre symbol at a square is equal to 1. (Contributed by Mario Carneiro, 5-Feb-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = 1) | ||
Theorem | lgsprme0 26392 | The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) | ||
Theorem | 1lgs 26393 | The Legendre symbol at 1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ (𝑁 ∈ ℤ → (1 /L 𝑁) = 1) | ||
Theorem | lgs1 26394 | The Legendre symbol at 1. See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ (𝐴 ∈ ℤ → (𝐴 /L 1) = 1) | ||
Theorem | lgsmodeq 26395 | The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → (𝐴 /L 𝑁) = (𝐵 /L 𝑁))) | ||
Theorem | lgsmulsqcoprm 26396 | The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁)) | ||
Theorem | lgsdirnn0 26397 | Variation on lgsdir 26385 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) | ||
Theorem | lgsdinn0 26398 | Variation on lgsdi 26387 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) | ||
Theorem | lgsqrlem1 26399 | Lemma for lgsqr 26404. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝑆 = (Poly1‘𝑌) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐷 = ( deg1 ‘𝑌) & ⊢ 𝑂 = (eval1‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ 𝑋 = (var1‘𝑌) & ⊢ − = (-g‘𝑆) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃)) ⇒ ⊢ (𝜑 → ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)) | ||
Theorem | lgsqrlem2 26400* | Lemma for lgsqr 26404. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝑆 = (Poly1‘𝑌) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐷 = ( deg1 ‘𝑌) & ⊢ 𝑂 = (eval1‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ 𝑋 = (var1‘𝑌) & ⊢ − = (-g‘𝑆) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) ⇒ ⊢ (𝜑 → 𝐺:(1...((𝑃 − 1) / 2))–1-1→(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |