![]() |
Metamath
Proof Explorer Theorem List (p. 264 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30784) |
![]() (30785-32307) |
![]() (32308-48350) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | aalioulem5 26301* | Lemma for aaliou 26303. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ π = (degβπΉ) & β’ (π β πΉ β (Polyββ€)) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ (π β (πΉβπ΄) = 0) β β’ (π β βπ₯ β β+ βπ β β€ βπ β β ((πΉβ(π / π)) β 0 β (π΄ = (π / π) β¨ (π₯ / (πβπ)) β€ (absβ(π΄ β (π / π)))))) | ||
Theorem | aalioulem6 26302* | Lemma for aaliou 26303. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ π = (degβπΉ) & β’ (π β πΉ β (Polyββ€)) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ (π β (πΉβπ΄) = 0) β β’ (π β βπ₯ β β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) β€ (absβ(π΄ β (π / π))))) | ||
Theorem | aaliou 26303* | Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial πΉ in integer coefficients, is not approximable beyond order π = deg(πΉ) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ π = (degβπΉ) & β’ (π β πΉ β (Polyββ€)) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ (π β (πΉβπ΄) = 0) β β’ (π β βπ₯ β β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π))))) | ||
Theorem | geolim3 26304* | Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ (π β π΄ β β€) & β’ (π β π΅ β β) & β’ (π β (absβπ΅) < 1) & β’ (π β πΆ β β) & β’ πΉ = (π β (β€β₯βπ΄) β¦ (πΆ Β· (π΅β(π β π΄)))) β β’ (π β seqπ΄( + , πΉ) β (πΆ / (1 β π΅))) | ||
Theorem | aaliou2 26305* | Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ (π΄ β (πΈ β© β) β βπ β β βπ₯ β β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π))))) | ||
Theorem | aaliou2b 26306* | Liouville's approximation theorem extended to complex π΄. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
β’ (π΄ β πΈ β βπ β β βπ₯ β β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π))))) | ||
Theorem | aaliou3lem1 26307* | Lemma for aaliou3 26316. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ πΊ = (π β (β€β₯βπ΄) β¦ ((2β-(!βπ΄)) Β· ((1 / 2)β(π β π΄)))) β β’ ((π΄ β β β§ π΅ β (β€β₯βπ΄)) β (πΊβπ΅) β β) | ||
Theorem | aaliou3lem2 26308* | Lemma for aaliou3 26316. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ πΊ = (π β (β€β₯βπ΄) β¦ ((2β-(!βπ΄)) Β· ((1 / 2)β(π β π΄)))) & β’ πΉ = (π β β β¦ (2β-(!βπ))) β β’ ((π΄ β β β§ π΅ β (β€β₯βπ΄)) β (πΉβπ΅) β (0(,](πΊβπ΅))) | ||
Theorem | aaliou3lem3 26309* | Lemma for aaliou3 26316. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ πΊ = (π β (β€β₯βπ΄) β¦ ((2β-(!βπ΄)) Β· ((1 / 2)β(π β π΄)))) & β’ πΉ = (π β β β¦ (2β-(!βπ))) β β’ (π΄ β β β (seqπ΄( + , πΉ) β dom β β§ Ξ£π β (β€β₯βπ΄)(πΉβπ) β β+ β§ Ξ£π β (β€β₯βπ΄)(πΉβπ) β€ (2 Β· (2β-(!βπ΄))))) | ||
Theorem | aaliou3lem8 26310* | Lemma for aaliou3 26316. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
β’ ((π΄ β β β§ π΅ β β+) β βπ₯ β β (2 Β· (2β-(!β(π₯ + 1)))) β€ (π΅ / ((2β(!βπ₯))βπ΄))) | ||
Theorem | aaliou3lem4 26311* | Lemma for aaliou3 26316. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ πΉ = (π β β β¦ (2β-(!βπ))) & β’ πΏ = Ξ£π β β (πΉβπ) & β’ π» = (π β β β¦ Ξ£π β (1...π)(πΉβπ)) β β’ πΏ β β | ||
Theorem | aaliou3lem5 26312* | Lemma for aaliou3 26316. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ πΉ = (π β β β¦ (2β-(!βπ))) & β’ πΏ = Ξ£π β β (πΉβπ) & β’ π» = (π β β β¦ Ξ£π β (1...π)(πΉβπ)) β β’ (π΄ β β β (π»βπ΄) β β) | ||
Theorem | aaliou3lem6 26313* | Lemma for aaliou3 26316. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ πΉ = (π β β β¦ (2β-(!βπ))) & β’ πΏ = Ξ£π β β (πΉβπ) & β’ π» = (π β β β¦ Ξ£π β (1...π)(πΉβπ)) β β’ (π΄ β β β ((π»βπ΄) Β· (2β(!βπ΄))) β β€) | ||
Theorem | aaliou3lem7 26314* | Lemma for aaliou3 26316. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ πΉ = (π β β β¦ (2β-(!βπ))) & β’ πΏ = Ξ£π β β (πΉβπ) & β’ π» = (π β β β¦ Ξ£π β (1...π)(πΉβπ)) β β’ (π΄ β β β ((π»βπ΄) β πΏ β§ (absβ(πΏ β (π»βπ΄))) β€ (2 Β· (2β-(!β(π΄ + 1)))))) | ||
Theorem | aaliou3lem9 26315* | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
β’ πΉ = (π β β β¦ (2β-(!βπ))) & β’ πΏ = Ξ£π β β (πΉβπ) & β’ π» = (π β β β¦ Ξ£π β (1...π)(πΉβπ)) β β’ Β¬ πΏ β πΈ | ||
Theorem | aaliou3 26316 | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 23-Nov-2014.) |
β’ Ξ£π β β (2β-(!βπ)) β πΈ | ||
Syntax | ctayl 26317 | Taylor polynomial of a function. |
class Tayl | ||
Syntax | cana 26318 | The class of analytic functions. |
class Ana | ||
Definition | df-tayl 26319* | Define the Taylor polynomial or Taylor series of a function. TODO-AV: π β (β0 βͺ {+β}) should be replaced by π β β0*. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ Tayl = (π β {β, β}, π β (β βpm π ) β¦ (π β (β0 βͺ {+β}), π β β© π β ((0[,]π) β© β€)dom ((π Dπ π)βπ) β¦ βͺ π₯ β β ({π₯} Γ (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ π)βπ)βπ) / (!βπ)) Β· ((π₯ β π)βπ))))))) | ||
Definition | df-ana 26320* | Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ Ana = (π β {β, β} β¦ {π β (β βpm π ) β£ βπ₯ β dom π π₯ β ((intβ((TopOpenββfld) βΎt π ))βdom (π β© (+β(π Tayl π)π₯)))}) | ||
Theorem | taylfvallem1 26321* | Lemma for taylfval 26323. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) β β’ (((π β§ π β β) β§ π β ((0[,]π) β© β€)) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ)) β β) | ||
Theorem | taylfvallem 26322* | Lemma for taylfval 26323. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) β β’ ((π β§ π β β) β (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ)))) β β) | ||
Theorem | taylfval 26323* |
Define the Taylor polynomial of a function. The constant Tayl is a
function of five arguments: π is the base set with respect to
evaluate the derivatives (generally β or
β), πΉ is the
function we are approximating, at point π΅, to order π. The
result is a polynomial function of π₯.
This "extended" version of taylpfval 26329 additionally handles the case π = +β, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β π = βͺ π₯ β β ({π₯} Γ (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))))) | ||
Theorem | eltayl 26324* | Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β (πππ β (π β β β§ π β (βfld tsums (π β ((0[,]π) β© β€) β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ))))))) | ||
Theorem | taylf 26325* | The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β π:dom πβΆβ) | ||
Theorem | tayl0 26326* | The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β (π β β0 β¨ π = +β)) & β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β (π΅ β dom π β§ (πβπ΅) = (πΉβπ΅))) | ||
Theorem | taylplem1 26327* | Lemma for taylpfval 26329 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) β β’ ((π β§ π β ((0[,]π) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) | ||
Theorem | taylplem2 26328* | Lemma for taylpfval 26329 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) β β’ (((π β§ π β β) β§ π β (0...π)) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ)) β β) | ||
Theorem | taylpfval 26329* | Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: π is the base set with respect to evaluate the derivatives (generally β or β), πΉ is the function we are approximating, at point π΅, to order π. The result is a polynomial function of π₯. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β π = (π₯ β β β¦ Ξ£π β (0...π)(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))) | ||
Theorem | taylpf 26330 | The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β π:ββΆβ) | ||
Theorem | taylpval 26331* | Value of the Taylor polynomial. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) & β’ (π β π β β) β β’ (π β (πβπ) = Ξ£π β (0...π)(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π β π΅)βπ))) | ||
Theorem | taylply2 26332* | The Taylor polynomial is a polynomial of degree (at most) π. This version of taylply 26334 shows that the coefficients of π are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11218. (Revised by GG, 30-Apr-2025.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) & β’ (π β π· β (SubRingββfld)) & β’ (π β π΅ β π·) & β’ ((π β§ π β (0...π)) β ((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) β π·) β β’ (π β (π β (Polyβπ·) β§ (degβπ) β€ π)) | ||
Theorem | taylply2OLD 26333* | Obsolete version of taylply2 26332 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) & β’ (π β π· β (SubRingββfld)) & β’ (π β π΅ β π·) & β’ ((π β§ π β (0...π)) β ((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) β π·) β β’ (π β (π β (Polyβπ·) β§ (degβπ) β€ π)) | ||
Theorem | taylply 26334 | The Taylor polynomial is a polynomial of degree (at most) π. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β (π β (Polyββ) β§ (degβπ) β€ π)) | ||
Theorem | dvtaylp 26335 | The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)β(π + 1))) β β’ (π β (β D ((π + 1)(π Tayl πΉ)π΅)) = (π(π Tayl (π D πΉ))π΅)) | ||
Theorem | dvntaylp 26336 | The π-th derivative of the Taylor polynomial is the Taylor polynomial of the π-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π΅ β dom ((π Dπ πΉ)β(π + π))) β β’ (π β ((β Dπ ((π + π)(π Tayl πΉ)π΅))βπ) = (π(π Tayl ((π Dπ πΉ)βπ))π΅)) | ||
Theorem | dvntaylp0 26337 | The first π derivatives of the Taylor polynomial at π΅ match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β π β (0...π)) & β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) & β’ π = (π(π Tayl πΉ)π΅) β β’ (π β (((β Dπ π)βπ)βπ΅) = (((π Dπ πΉ)βπ)βπ΅)) | ||
Theorem | taylthlem1 26338* | Lemma for taylth 26341. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'HΓ΄pital's rule. However, since our proof of L'HΓ΄pital assumes that π = β, we can only do this part generically, and for taylth 26341 itself we must restrict to β. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β π β {β, β}) & β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β π) & β’ (π β dom ((π Dπ πΉ)βπ) = π΄) & β’ (π β π β β) & β’ (π β π΅ β π΄) & β’ π = (π(π Tayl πΉ)π΅) & β’ π = (π₯ β (π΄ β {π΅}) β¦ (((πΉβπ₯) β (πβπ₯)) / ((π₯ β π΅)βπ))) & β’ ((π β§ (π β (1..^π) β§ 0 β ((π¦ β (π΄ β {π΅}) β¦ (((((π Dπ πΉ)β(π β π))βπ¦) β (((β Dπ π)β(π β π))βπ¦)) / ((π¦ β π΅)βπ))) limβ π΅))) β 0 β ((π₯ β (π΄ β {π΅}) β¦ (((((π Dπ πΉ)β(π β (π + 1)))βπ₯) β (((β Dπ π)β(π β (π + 1)))βπ₯)) / ((π₯ β π΅)β(π + 1)))) limβ π΅)) β β’ (π β 0 β (π limβ π΅)) | ||
Theorem | taylthlem2 26339* | Lemma for taylth 26341. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11218. (Revised by GG, 19-Apr-2025.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β dom ((β Dπ πΉ)βπ) = π΄) & β’ (π β π β β) & β’ (π β π΅ β π΄) & β’ π = (π(β Tayl πΉ)π΅) & β’ (π β π β (1..^π)) & β’ (π β 0 β ((π₯ β (π΄ β {π΅}) β¦ (((((β Dπ πΉ)β(π β π))βπ₯) β (((β Dπ π)β(π β π))βπ₯)) / ((π₯ β π΅)βπ))) limβ π΅)) β β’ (π β 0 β ((π₯ β (π΄ β {π΅}) β¦ (((((β Dπ πΉ)β(π β (π + 1)))βπ₯) β (((β Dπ π)β(π β (π + 1)))βπ₯)) / ((π₯ β π΅)β(π + 1)))) limβ π΅)) | ||
Theorem | taylthlem2OLD 26340* | Obsolete version of taylthlem2 26339 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β dom ((β Dπ πΉ)βπ) = π΄) & β’ (π β π β β) & β’ (π β π΅ β π΄) & β’ π = (π(β Tayl πΉ)π΅) & β’ (π β π β (1..^π)) & β’ (π β 0 β ((π₯ β (π΄ β {π΅}) β¦ (((((β Dπ πΉ)β(π β π))βπ₯) β (((β Dπ π)β(π β π))βπ₯)) / ((π₯ β π΅)βπ))) limβ π΅)) β β’ (π β 0 β ((π₯ β (π΄ β {π΅}) β¦ (((((β Dπ πΉ)β(π β (π + 1)))βπ₯) β (((β Dπ π)β(π β (π + 1)))βπ₯)) / ((π₯ β π΅)β(π + 1)))) limβ π΅)) | ||
Theorem | taylth 26341* | Taylor's theorem. The Taylor polynomial of a π-times differentiable function is such that the error term goes to zero faster than (π₯ β π΅)βπ. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ (π β dom ((β Dπ πΉ)βπ) = π΄) & β’ (π β π β β) & β’ (π β π΅ β π΄) & β’ π = (π(β Tayl πΉ)π΅) & β’ π = (π₯ β (π΄ β {π΅}) β¦ (((πΉβπ₯) β (πβπ₯)) / ((π₯ β π΅)βπ))) β β’ (π β 0 β (π limβ π΅)) | ||
Syntax | culm 26342 | Extend class notation to include the uniform convergence predicate. |
class βπ’ | ||
Definition | df-ulm 26343* | Define the uniform convergence of a sequence of functions. Here πΉ(βπ’βπ)πΊ if πΉ is a sequence of functions πΉ(π), π β β defined on π and πΊ is a function on π, and for every 0 < π₯ there is a π such that the functions πΉ(π) for π β€ π are all uniformly within π₯ of πΊ on the domain π. Compare with df-clim 15464. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ βπ’ = (π β V β¦ {β¨π, π¦β© β£ βπ β β€ (π:(β€β₯βπ)βΆ(β βm π ) β§ π¦:π βΆβ β§ βπ₯ β β+ βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πβπ)βπ§) β (π¦βπ§))) < π₯)}) | ||
Theorem | ulmrel 26344 | The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ Rel (βπ’βπ) | ||
Theorem | ulmscl 26345 | Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (πΉ(βπ’βπ)πΊ β π β V) | ||
Theorem | ulmval 26346* | Express the predicate: The sequence of functions πΉ converges uniformly to πΊ on π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (π β π β (πΉ(βπ’βπ)πΊ β βπ β β€ (πΉ:(β€β₯βπ)βΆ(β βm π) β§ πΊ:πβΆβ β§ βπ₯ β β+ βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β (πΊβπ§))) < π₯))) | ||
Theorem | ulmcl 26347 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (πΉ(βπ’βπ)πΊ β πΊ:πβΆβ) | ||
Theorem | ulmf 26348* | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (πΉ(βπ’βπ)πΊ β βπ β β€ πΉ:(β€β₯βπ)βΆ(β βm π)) | ||
Theorem | ulmpm 26349 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (πΉ(βπ’βπ)πΊ β πΉ β ((β βm π) βpm β€)) | ||
Theorem | ulmf2 26350 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ ((πΉ Fn π β§ πΉ(βπ’βπ)πΊ) β πΉ:πβΆ(β βm π)) | ||
Theorem | ulm2 26351* | Simplify ulmval 26346 when πΉ and πΊ are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ ((π β§ (π β π β§ π§ β π)) β ((πΉβπ)βπ§) = π΅) & β’ ((π β§ π§ β π) β (πΊβπ§) = π΄) & β’ (π β πΊ:πβΆβ) & β’ (π β π β π) β β’ (π β (πΉ(βπ’βπ)πΊ β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < π₯)) | ||
Theorem | ulmi 26352* | The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ ((π β§ (π β π β§ π§ β π)) β ((πΉβπ)βπ§) = π΅) & β’ ((π β§ π§ β π) β (πΊβπ§) = π΄) & β’ (π β πΉ(βπ’βπ)πΊ) & β’ (π β πΆ β β+) β β’ (π β βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < πΆ) | ||
Theorem | ulmclm 26353* | A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π΄ β π) & β’ (π β π» β π) & β’ ((π β§ π β π) β ((πΉβπ)βπ΄) = (π»βπ)) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β π» β (πΊβπ΄)) | ||
Theorem | ulmres 26354 | A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ π = (β€β₯βπ) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (πΉ(βπ’βπ)πΊ β (πΉ βΎ π)(βπ’βπ)πΊ)) | ||
Theorem | ulmshftlem 26355* | Lemma for ulmshft 26356. (Contributed by Mario Carneiro, 24-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ π = (β€β₯β(π + πΎ)) & β’ (π β π β β€) & β’ (π β πΎ β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π» = (π β π β¦ (πΉβ(π β πΎ)))) β β’ (π β (πΉ(βπ’βπ)πΊ β π»(βπ’βπ)πΊ)) | ||
Theorem | ulmshft 26356* | A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ π = (β€β₯β(π + πΎ)) & β’ (π β π β β€) & β’ (π β πΎ β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π» = (π β π β¦ (πΉβ(π β πΎ)))) β β’ (π β (πΉ(βπ’βπ)πΊ β π»(βπ’βπ)πΊ)) | ||
Theorem | ulm0 26357 | Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) β β’ ((π β§ π = β ) β πΉ(βπ’βπ)πΊ) | ||
Theorem | ulmuni 26358 | A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
β’ ((πΉ(βπ’βπ)πΊ β§ πΉ(βπ’βπ)π») β πΊ = π») | ||
Theorem | ulmdm 26359 | Two ways to express that a function has a limit. (The expression ((βπ’βπ)βπΉ) is sometimes useful as a shorthand for "the unique limit of the function πΉ"). (Contributed by Mario Carneiro, 5-Jul-2017.) |
β’ (πΉ β dom (βπ’βπ) β πΉ(βπ’βπ)((βπ’βπ)βπΉ)) | ||
Theorem | ulmcaulem 26360* | Lemma for ulmcau 26361 and ulmcau2 26362: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 15334. (Contributed by Mario Carneiro, 1-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯ β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯)) | ||
Theorem | ulmcau 26361* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < π₯ there is a π such that for all π β€ π the functions πΉ(π) and πΉ(π) are uniformly within π₯ of each other on π. This is the four-quantifier version, see ulmcau2 26362 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (πΉ β dom (βπ’βπ) β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯)) | ||
Theorem | ulmcau2 26362* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < π₯ there is a π such that for all π β€ π, π the functions πΉ(π) and πΉ(π) are uniformly within π₯ of each other on π. (Contributed by Mario Carneiro, 1-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (πΉ β dom (βπ’βπ) β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯)) | ||
Theorem | ulmss 26363* | A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β π) & β’ ((π β§ π₯ β π) β π΄ β π) & β’ (π β (π₯ β π β¦ π΄)(βπ’βπ)πΊ) β β’ (π β (π₯ β π β¦ (π΄ βΎ π))(βπ’βπ)(πΊ βΎ π)) | ||
Theorem | ulmbdd 26364* | A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ ((π β§ π β π) β βπ₯ β β βπ§ β π (absβ((πΉβπ)βπ§)) β€ π₯) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β βπ₯ β β βπ§ β π (absβ(πΊβπ§)) β€ π₯) | ||
Theorem | ulmcn 26365 | A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(πβcnββ)) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β πΊ β (πβcnββ)) | ||
Theorem | ulmdvlem1 26366* | Lemma for ulmdv 26369. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») & β’ ((π β§ π) β πΆ β π) & β’ ((π β§ π) β π β β+) & β’ ((π β§ π) β π β β+) & β’ ((π β§ π) β π β β+) & β’ ((π β§ π) β π < π) & β’ ((π β§ π) β (πΆ(ballβ((abs β β ) βΎ (π Γ π)))π) β π) & β’ ((π β§ π) β (absβ(π β πΆ)) < π) & β’ ((π β§ π) β π β π) & β’ ((π β§ π) β βπ β (β€β₯βπ)βπ₯ β π (absβ(((π D (πΉβπ))βπ₯) β ((π D (πΉβπ))βπ₯))) < ((π / 2) / 2)) & β’ ((π β§ π) β (absβ(((π D (πΉβπ))βπΆ) β (π»βπΆ))) < (π / 2)) & β’ ((π β§ π) β π β π) & β’ ((π β§ π) β π β πΆ) & β’ ((π β§ π) β ((absβ(π β πΆ)) < π β (absβ(((((πΉβπ)βπ) β ((πΉβπ)βπΆ)) / (π β πΆ)) β ((π D (πΉβπ))βπΆ))) < ((π / 2) / 2))) β β’ ((π β§ π) β (absβ((((πΊβπ) β (πΊβπΆ)) / (π β πΆ)) β (π»βπΆ))) < π ) | ||
Theorem | ulmdvlem2 26367* | Lemma for ulmdv 26369. (Contributed by Mario Carneiro, 8-May-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β β’ ((π β§ π β π) β dom (π D (πΉβπ)) = π) | ||
Theorem | ulmdvlem3 26368* | Lemma for ulmdv 26369. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β β’ ((π β§ π§ β π) β π§(π D πΊ)(π»βπ§)) | ||
Theorem | ulmdv 26369* | If πΉ is a sequence of differentiable functions on π which converge pointwise to πΊ, and the derivatives of πΉ(π) converge uniformly to π», then πΊ is differentiable with derivative π». (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β β’ (π β (π D πΊ) = π») | ||
Theorem | mtest 26370* | The Weierstrass M-test. If πΉ is a sequence of functions which are uniformly bounded by the convergent sequence π(π), then the series generated by the sequence πΉ converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π β π) & β’ ((π β§ π β π) β (πβπ) β β) & β’ ((π β§ (π β π β§ π§ β π)) β (absβ((πΉβπ)βπ§)) β€ (πβπ)) & β’ (π β seqπ( + , π) β dom β ) β β’ (π β seqπ( βf + , πΉ) β dom (βπ’βπ)) | ||
Theorem | mtestbdd 26371* | Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π β π) & β’ ((π β§ π β π) β (πβπ) β β) & β’ ((π β§ (π β π β§ π§ β π)) β (absβ((πΉβπ)βπ§)) β€ (πβπ)) & β’ (π β seqπ( + , π) β dom β ) & β’ (π β seqπ( βf + , πΉ)(βπ’βπ)π) β β’ (π β βπ₯ β β βπ§ β π (absβ(πβπ§)) β€ π₯) | ||
Theorem | mbfulm 26372 | A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25627.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆMblFn) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β πΊ β MblFn) | ||
Theorem | iblulm 26373 | A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆπΏ1) & β’ (π β πΉ(βπ’βπ)πΊ) & β’ (π β (volβπ) β β) β β’ (π β πΊ β πΏ1) | ||
Theorem | itgulm 26374* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆπΏ1) & β’ (π β πΉ(βπ’βπ)πΊ) & β’ (π β (volβπ) β β) β β’ (π β (π β π β¦ β«π((πΉβπ)βπ₯) dπ₯) β β«π(πΊβπ₯) dπ₯) | ||
Theorem | itgulm2 26375* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ ((π β§ π β π) β (π₯ β π β¦ π΄) β πΏ1) & β’ (π β (π β π β¦ (π₯ β π β¦ π΄))(βπ’βπ)(π₯ β π β¦ π΅)) & β’ (π β (volβπ) β β) β β’ (π β ((π₯ β π β¦ π΅) β πΏ1 β§ (π β π β¦ β«ππ΄ dπ₯) β β«ππ΅ dπ₯)) | ||
Theorem | pserval 26376* | Value of the function πΊ that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) β β’ (π β β β (πΊβπ) = (π β β0 β¦ ((π΄βπ) Β· (πβπ)))) | ||
Theorem | pserval2 26377* | Value of the function πΊ that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) β β’ ((π β β β§ π β β0) β ((πΊβπ)βπ) = ((π΄βπ) Β· (πβπ))) | ||
Theorem | psergf 26378* | The sequence of terms in the infinite sequence defining a power series for fixed π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) β β’ (π β (πΊβπ):β0βΆβ) | ||
Theorem | radcnvlem1 26379* | Lemma for radcnvlt1 26384, radcnvle 26386. If π is a point closer to zero than π and the power series converges at π, then it converges absolutely at π, even if the terms in the sequence are multiplied by π. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (absβπ) < (absβπ)) & β’ (π β seq0( + , (πΊβπ)) β dom β ) & β’ π» = (π β β0 β¦ (π Β· (absβ((πΊβπ)βπ)))) β β’ (π β seq0( + , π») β dom β ) | ||
Theorem | radcnvlem2 26380* | Lemma for radcnvlt1 26384, radcnvle 26386. If π is a point closer to zero than π and the power series converges at π, then it converges absolutely at π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (absβπ) < (absβπ)) & β’ (π β seq0( + , (πΊβπ)) β dom β ) β β’ (π β seq0( + , (abs β (πΊβπ))) β dom β ) | ||
Theorem | radcnvlem3 26381* | Lemma for radcnvlt1 26384, radcnvle 26386. If π is a point closer to zero than π and the power series converges at π, then it converges at π. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (absβπ) < (absβπ)) & β’ (π β seq0( + , (πΊβπ)) β dom β ) β β’ (π β seq0( + , (πΊβπ)) β dom β ) | ||
Theorem | radcnv0 26382* | Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) β β’ (π β 0 β {π β β β£ seq0( + , (πΊβπ)) β dom β }) | ||
Theorem | radcnvcl 26383* | The radius of convergence π of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) β β’ (π β π β (0[,]+β)) | ||
Theorem | radcnvlt1 26384* | If π is within the open disk of radius π centered at zero, then the infinite series converges absolutely at π, and also converges when the series is multiplied by π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ (π β π β β) & β’ (π β (absβπ) < π ) & β’ π» = (π β β0 β¦ (π Β· (absβ((πΊβπ)βπ)))) β β’ (π β (seq0( + , π») β dom β β§ seq0( + , (abs β (πΊβπ))) β dom β )) | ||
Theorem | radcnvlt2 26385* | If π is within the open disk of radius π centered at zero, then the infinite series converges at π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ (π β π β β) & β’ (π β (absβπ) < π ) β β’ (π β seq0( + , (πΊβπ)) β dom β ) | ||
Theorem | radcnvle 26386* | If π is a convergent point of the infinite series, then π is within the closed disk of radius π centered at zero. Or, by contraposition, the series diverges at any point strictly more than π from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ (π β π β β) & β’ (π β seq0( + , (πΊβπ)) β dom β ) β β’ (π β (absβπ) β€ π ) | ||
Theorem | dvradcnv 26387* | The radius of convergence of the (formal) derivative π» of the power series πΊ is at least as large as the radius of convergence of πΊ. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (((π + 1) Β· (π΄β(π + 1))) Β· (πβπ))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β (absβπ) < π ) β β’ (π β seq0( + , π») β dom β ) | ||
Theorem | pserulm 26388* | If π is a region contained in a circle of radius π < π , then the sequence of partial sums of the infinite series converges uniformly on π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ))) & β’ (π β π β β) & β’ (π β π < π ) & β’ (π β π β (β‘abs β (0[,]π))) β β’ (π β π»(βπ’βπ)πΉ) | ||
Theorem | psercn2 26389* | Since by pserulm 26388 the series converges uniformly, it is also continuous by ulmcn 26365. (Contributed by Mario Carneiro, 3-Mar-2015.) Avoid ax-mulf 11218. (Revised by GG, 16-Mar-2025.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ))) & β’ (π β π β β) & β’ (π β π < π ) & β’ (π β π β (β‘abs β (0[,]π))) β β’ (π β πΉ β (πβcnββ)) | ||
Theorem | psercn2OLD 26390* | Obsolete version of psercn2 26389 as of 16-Apr-2025. (Contributed by Mario Carneiro, 3-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ))) & β’ (π β π β β) & β’ (π β π < π ) & β’ (π β π β (β‘abs β (0[,]π))) β β’ (π β πΉ β (πβcnββ)) | ||
Theorem | psercnlem2 26391* | Lemma for psercn 26393. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ ((π β§ π β π) β (π β β+ β§ (absβπ) < π β§ π < π )) β β’ ((π β§ π β π) β (π β (0(ballβ(abs β β ))π) β§ (0(ballβ(abs β β ))π) β (β‘abs β (0[,]π)) β§ (β‘abs β (0[,]π)) β π)) | ||
Theorem | psercnlem1 26392* | Lemma for psercn 26393. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) β β’ ((π β§ π β π) β (π β β+ β§ (absβπ) < π β§ π < π )) | ||
Theorem | psercn 26393* | An infinite series converges to a continuous function on the open disk of radius π , where π is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) β β’ (π β πΉ β (πβcnββ)) | ||
Theorem | pserdvlem1 26394* | Lemma for pserdv 26396. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) β β’ ((π β§ π β π) β ((((absβπ) + π) / 2) β β+ β§ (absβπ) < (((absβπ) + π) / 2) β§ (((absβπ) + π) / 2) < π )) | ||
Theorem | pserdvlem2 26395* | Lemma for pserdv 26396. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) & β’ π΅ = (0(ballβ(abs β β ))(((absβπ) + π) / 2)) β β’ ((π β§ π β π) β (β D (πΉ βΎ π΅)) = (π¦ β π΅ β¦ Ξ£π β β0 (((π + 1) Β· (π΄β(π + 1))) Β· (π¦βπ)))) | ||
Theorem | pserdv 26396* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) & β’ π΅ = (0(ballβ(abs β β ))(((absβπ) + π) / 2)) β β’ (π β (β D πΉ) = (π¦ β π β¦ Ξ£π β β0 (((π + 1) Β· (π΄β(π + 1))) Β· (π¦βπ)))) | ||
Theorem | pserdv2 26397* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) & β’ π΅ = (0(ballβ(abs β β ))(((absβπ) + π) / 2)) β β’ (π β (β D πΉ) = (π¦ β π β¦ Ξ£π β β ((π Β· (π΄βπ)) Β· (π¦β(π β 1))))) | ||
Theorem | abelthlem1 26398* | Lemma for abelth 26408. (Contributed by Mario Carneiro, 1-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) β β’ (π β 1 β€ sup({π β β β£ seq0( + , ((π§ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π§βπ))))βπ)) β dom β }, β*, < )) | ||
Theorem | abelthlem2 26399* | Lemma for abelth 26408. The peculiar region π, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} β β’ (π β (1 β π β§ (π β {1}) β (0(ballβ(abs β β ))1))) | ||
Theorem | abelthlem3 26400* | Lemma for abelth 26408. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} β β’ ((π β§ π β π) β seq0( + , (π β β0 β¦ ((π΄βπ) Β· (πβπ)))) β dom β ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |