| Metamath
Proof Explorer Theorem List (p. 264 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | aaliou3lem2 26301* | Lemma for aaliou3 26309. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝐵) ∈ (0(,](𝐺‘𝐵))) | ||
| Theorem | aaliou3lem3 26302* | Lemma for aaliou3 26309. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ≤ (2 · (2↑-(!‘𝐴))))) | ||
| Theorem | aaliou3lem8 26303* | Lemma for aaliou3 26309. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴))) | ||
| Theorem | aaliou3lem4 26304* | Lemma for aaliou3 26309. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ 𝐿 ∈ ℝ | ||
| Theorem | aaliou3lem5 26305* | Lemma for aaliou3 26309. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) ∈ ℝ) | ||
| Theorem | aaliou3lem6 26306* | Lemma for aaliou3 26309. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) · (2↑(!‘𝐴))) ∈ ℤ) | ||
| Theorem | aaliou3lem7 26307* | Lemma for aaliou3 26309. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻‘𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) | ||
| Theorem | aaliou3lem9 26308* | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ ¬ 𝐿 ∈ 𝔸 | ||
| Theorem | aaliou3 26309 | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 23-Nov-2014.) |
| ⊢ Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) ∉ 𝔸 | ||
| Syntax | ctayl 26310 | Taylor polynomial of a function. |
| class Tayl | ||
| Syntax | cana 26311 | The class of analytic functions. |
| class Ana | ||
| Definition | df-tayl 26312* | Define the Taylor polynomial or Taylor series of a function. TODO-AV: 𝑛 ∈ (ℕ0 ∪ {+∞}) should be replaced by 𝑛 ∈ ℕ0*. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 ∈ ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) | ||
| Definition | df-ana 26313* | Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) | ||
| Theorem | taylfvallem1 26314* | Lemma for taylfval 26316. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | ||
| Theorem | taylfvallem 26315* | Lemma for taylfval 26316. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)))) ⊆ ℂ) | ||
| Theorem | taylfval 26316* |
Define the Taylor polynomial of a function. The constant Tayl is a
function of five arguments: 𝑆 is the base set with respect to
evaluate the derivatives (generally ℝ or
ℂ), 𝐹 is the
function we are approximating, at point 𝐵, to order 𝑁. The
result is a polynomial function of 𝑥.
This "extended" version of taylpfval 26322 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) | ||
| Theorem | eltayl 26317* | Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))))))) | ||
| Theorem | taylf 26318* | The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇:dom 𝑇⟶ℂ) | ||
| Theorem | tayl0 26319* | The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇‘𝐵) = (𝐹‘𝐵))) | ||
| Theorem | taylplem1 26320* | Lemma for taylpfval 26322 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | ||
| Theorem | taylplem2 26321* | Lemma for taylpfval 26322 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | ||
| Theorem | taylpfval 26322* | Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally ℝ or ℂ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) | ||
| Theorem | taylpf 26323 | The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇:ℂ⟶ℂ) | ||
| Theorem | taylpval 26324* | Value of the Taylor polynomial. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑇‘𝑋) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))) | ||
| Theorem | taylply2 26325* | The Taylor polynomial is a polynomial of degree (at most) 𝑁. This version of taylply 26327 shows that the coefficients of 𝑇 are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11207. (Revised by GG, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝐷 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| Theorem | taylply2OLD 26326* | Obsolete version of taylply2 26325 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝐷 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| Theorem | taylply 26327 | The Taylor polynomial is a polynomial of degree (at most) 𝑁. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| Theorem | dvtaylp 26328 | The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1))) ⇒ ⊢ (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵)) | ||
| Theorem | dvntaylp 26329 | The 𝑀-th derivative of the Taylor polynomial is the Taylor polynomial of the 𝑀-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀))) ⇒ ⊢ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) | ||
| Theorem | dvntaylp0 26330 | The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) | ||
| Theorem | taylthlem1 26331* | Lemma for taylth 26334. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'Hôpital's rule. However, since our proof of L'Hôpital assumes that 𝑆 = ℝ, we can only do this part generically, and for taylth 26334 itself we must restrict to ℝ. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑛))‘𝑦)) / ((𝑦 − 𝐵)↑𝑛))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑛 + 1)))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) | ||
| Theorem | taylthlem2 26332* | Lemma for taylth 26334. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11207. (Revised by GG, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) & ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) | ||
| Theorem | taylthlem2OLD 26333* | Obsolete version of taylthlem2 26332 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) & ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) | ||
| Theorem | taylth 26334* | Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥 − 𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) ⇒ ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) | ||
| Syntax | culm 26335 | Extend class notation to include the uniform convergence predicate. |
| class ⇝𝑢 | ||
| Definition | df-ulm 26336* | Define the uniform convergence of a sequence of functions. Here 𝐹(⇝𝑢‘𝑆)𝐺 if 𝐹 is a sequence of functions 𝐹(𝑛), 𝑛 ∈ ℕ defined on 𝑆 and 𝐺 is a function on 𝑆, and for every 0 < 𝑥 there is a 𝑗 such that the functions 𝐹(𝑘) for 𝑗 ≤ 𝑘 are all uniformly within 𝑥 of 𝐺 on the domain 𝑆. Compare with df-clim 15502. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ ⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) | ||
| Theorem | ulmrel 26337 | The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ Rel (⇝𝑢‘𝑆) | ||
| Theorem | ulmscl 26338 | Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | ||
| Theorem | ulmval 26339* | Express the predicate: The sequence of functions 𝐹 converges uniformly to 𝐺 on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝑆 ∈ 𝑉 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) | ||
| Theorem | ulmcl 26340 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | ||
| Theorem | ulmf 26341* | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | ||
| Theorem | ulmpm 26342 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) | ||
| Theorem | ulmf2 26343 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | ||
| Theorem | ulm2 26344* | Simplify ulmval 26339 when 𝐹 and 𝐺 are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) & ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
| Theorem | ulmi 26345* | The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) | ||
| Theorem | ulmclm 26346* | A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) | ||
| Theorem | ulmres 26347 | A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ (𝐹 ↾ 𝑊)(⇝𝑢‘𝑆)𝐺)) | ||
| Theorem | ulmshftlem 26348* | Lemma for ulmshft 26349. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑊 ↦ (𝐹‘(𝑛 − 𝐾)))) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐻(⇝𝑢‘𝑆)𝐺)) | ||
| Theorem | ulmshft 26349* | A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑊 ↦ (𝐹‘(𝑛 − 𝐾)))) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 𝐻(⇝𝑢‘𝑆)𝐺)) | ||
| Theorem | ulm0 26350 | Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) ⇒ ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) | ||
| Theorem | ulmuni 26351 | A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
| ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) | ||
| Theorem | ulmdm 26352 | Two ways to express that a function has a limit. (The expression ((⇝𝑢‘𝑆)‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 5-Jul-2017.) |
| ⊢ (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ 𝐹(⇝𝑢‘𝑆)((⇝𝑢‘𝑆)‘𝐹)) | ||
| Theorem | ulmcaulem 26353* | Lemma for ulmcau 26354 and ulmcau2 26355: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 15372. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) | ||
| Theorem | ulmcau 26354* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗 ≤ 𝑘 the functions 𝐹(𝑘) and 𝐹(𝑗) are uniformly within 𝑥 of each other on 𝑆. This is the four-quantifier version, see ulmcau2 26355 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) | ||
| Theorem | ulmcau2 26355* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗 ≤ 𝑘, 𝑚 the functions 𝐹(𝑘) and 𝐹(𝑚) are uniformly within 𝑥 of each other on 𝑆. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) | ||
| Theorem | ulmss 26356* | A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))(⇝𝑢‘𝑇)(𝐺 ↾ 𝑇)) | ||
| Theorem | ulmbdd 26357* | A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘((𝐹‘𝑘)‘𝑧)) ≤ 𝑥) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝐺‘𝑧)) ≤ 𝑥) | ||
| Theorem | ulmcn 26358 | A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(𝑆–cn→ℂ)) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | ulmdvlem1 26359* | Lemma for ulmdv 26362. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑈 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑈 < 𝑊) & ⊢ ((𝜑 ∧ 𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → (abs‘(𝑌 − 𝐶)) < 𝑈) & ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝜓) → ∀𝑚 ∈ (ℤ≥‘𝑁)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑁))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑅 / 2) / 2)) & ⊢ ((𝜑 ∧ 𝜓) → (abs‘(((𝑆 D (𝐹‘𝑁))‘𝐶) − (𝐻‘𝐶))) < (𝑅 / 2)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑌 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → 𝑌 ≠ 𝐶) & ⊢ ((𝜑 ∧ 𝜓) → ((abs‘(𝑌 − 𝐶)) < 𝑊 → (abs‘(((((𝐹‘𝑁)‘𝑌) − ((𝐹‘𝑁)‘𝐶)) / (𝑌 − 𝐶)) − ((𝑆 D (𝐹‘𝑁))‘𝐶))) < ((𝑅 / 2) / 2))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (abs‘((((𝐺‘𝑌) − (𝐺‘𝐶)) / (𝑌 − 𝐶)) − (𝐻‘𝐶))) < 𝑅) | ||
| Theorem | ulmdvlem2 26360* | Lemma for ulmdv 26362. (Contributed by Mario Carneiro, 8-May-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | ||
| Theorem | ulmdvlem3 26361* | Lemma for ulmdv 26362. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧(𝑆 D 𝐺)(𝐻‘𝑧)) | ||
| Theorem | ulmdv 26362* | If 𝐹 is a sequence of differentiable functions on 𝑋 which converge pointwise to 𝐺, and the derivatives of 𝐹(𝑛) converge uniformly to 𝐻, then 𝐺 is differentiable with derivative 𝐻. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) | ||
| Theorem | mtest 26363* | The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) & ⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢‘𝑆)) | ||
| Theorem | mtestbdd 26364* | Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) & ⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝑇‘𝑧)) ≤ 𝑥) | ||
| Theorem | mbfulm 26365 | A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25619.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
| Theorem | iblulm 26366 | A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐿1) | ||
| Theorem | itgulm 26367* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺‘𝑥) d𝑥) | ||
| Theorem | itgulm2 26368* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ 𝐿1) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ 𝐴))(⇝𝑢‘𝑆)(𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝑆 ↦ 𝐵) ∈ 𝐿1 ∧ (𝑘 ∈ 𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥)) | ||
| Theorem | pserval 26369* | Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) ⇒ ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) | ||
| Theorem | pserval2 26370* | Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) ⇒ ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) | ||
| Theorem | psergf 26371* | The sequence of terms in the infinite sequence defining a power series for fixed 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) | ||
| Theorem | radcnvlem1 26372* | Lemma for radcnvlt1 26377, radcnvle 26379. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋, even if the terms in the sequence are multiplied by 𝑛. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) & ⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ ) | ||
| Theorem | radcnvlem2 26373* | Lemma for radcnvlt1 26377, radcnvle 26379. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ) | ||
| Theorem | radcnvlem3 26374* | Lemma for radcnvlt1 26377, radcnvle 26379. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges at 𝑋. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) | ||
| Theorem | radcnv0 26375* | Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) ⇒ ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) | ||
| Theorem | radcnvcl 26376* | The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ⇒ ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) | ||
| Theorem | radcnvlt1 26377* | If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges absolutely at 𝑋, and also converges when the series is multiplied by 𝑛. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) & ⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) ⇒ ⊢ (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ )) | ||
| Theorem | radcnvlt2 26378* | If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) | ||
| Theorem | radcnvle 26379* | If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (abs‘𝑋) ≤ 𝑅) | ||
| Theorem | dvradcnv 26380* | The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋↑𝑛))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ ) | ||
| Theorem | pserulm 26381* | If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) | ||
| Theorem | psercn2 26382* | Since by pserulm 26381 the series converges uniformly, it is also continuous by ulmcn 26358. (Contributed by Mario Carneiro, 3-Mar-2015.) Avoid ax-mulf 11207. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | psercn2OLD 26383* | Obsolete version of psercn2 26382 as of 16-Apr-2025. (Contributed by Mario Carneiro, 3-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | psercnlem2 26384* | Lemma for psercn 26386. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) | ||
| Theorem | psercnlem1 26385* | Lemma for psercn 26386. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | ||
| Theorem | psercn 26386* | An infinite series converges to a continuous function on the open disk of radius 𝑅, where 𝑅 is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | pserdvlem1 26387* | Lemma for pserdv 26389. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) | ||
| Theorem | pserdvlem2 26388* | Lemma for pserdv 26389. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | ||
| Theorem | pserdv 26389* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | ||
| Theorem | pserdv2 26390* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) | ||
| Theorem | abelthlem1 26391* | Lemma for abelth 26401. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) | ||
| Theorem | abelthlem2 26392* | Lemma for abelth 26401. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⇒ ⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))) | ||
| Theorem | abelthlem3 26393* | Lemma for abelth 26401. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) | ||
| Theorem | abelthlem4 26394* | Lemma for abelth 26401. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) | ||
| Theorem | abelthlem5 26395* | Lemma for abelth 26401. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) | ||
| Theorem | abelthlem6 26396* | Lemma for abelth 26401. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) | ||
| Theorem | abelthlem7a 26397* | Lemma for abelth 26401. (Contributed by Mario Carneiro, 8-May-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) ⇒ ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) | ||
| Theorem | abelthlem7 26398* | Lemma for abelth 26401. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅) & ⊢ (𝜑 → (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) ⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑋)) < ((𝑀 + 1) · 𝑅)) | ||
| Theorem | abelthlem8 26399* | Lemma for abelth 26401. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
| Theorem | abelthlem9 26400* | Lemma for abelth 26401. By adjusting the constant term, we can assume that the entire series converges to 0. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |