| Metamath
Proof Explorer Theorem List (p. 264 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | plycnOLD 26301 | Obsolete version of plycn 26300 as of 10-Apr-2025. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | dgr0 26302 | The degree of the zero polynomial is zero. Note: this differs from some other definitions of the degree of the zero polynomial, such as -1, -∞ or undefined. But it is convenient for us to define it this way, so that we have dgrcl 26272, dgreq0 26305 and coeid 26277 without having to special-case zero, although plydivalg 26341 is a little more complicated as a result. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (deg‘0𝑝) = 0 | ||
| Theorem | coeidp 26303 | The coefficients of the identity function. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ (𝐴 ∈ ℕ0 → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) | ||
| Theorem | dgrid 26304 | The degree of the identity function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ (deg‘Xp) = 1 | ||
| Theorem | dgreq0 26305 | The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) | ||
| Theorem | dgrlt 26306 | Two ways to say that the degree of 𝐹 is strictly less than 𝑁. (Contributed by Mario Carneiro, 25-Jul-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝 ∨ 𝑁 < 𝑀) ↔ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0))) | ||
| Theorem | dgradd 26307 | The degree of a sum of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | ||
| Theorem | dgradd2 26308 | The degree of a sum of polynomials of unequal degrees is the degree of the larger polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹 ∘f + 𝐺)) = 𝑁) | ||
| Theorem | dgrmul2 26309 | The degree of a product of polynomials is at most the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁)) | ||
| Theorem | dgrmul 26310 | The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹 ∘f · 𝐺)) = (𝑀 + 𝑁)) | ||
| Theorem | dgrmulc 26311 | Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹)) | ||
| Theorem | dgrsub 26312 | The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | ||
| Theorem | dgrcolem1 26313* | The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁)) | ||
| Theorem | dgrcolem2 26314* | Lemma for dgrco 26315. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ 𝐴 = (coeff‘𝐹) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 = (𝐷 + 1)) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) ⇒ ⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) | ||
| Theorem | dgrco 26315 | The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) | ||
| Theorem | plycjlem 26316* | Lemma for plycj 26317 and coecj 26318. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | plycj 26317* | The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | ||
| Theorem | coecj 26318 | Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) | ||
| Theorem | plycjOLD 26319* | Obsolete version of plycj 26317 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | ||
| Theorem | coecjOLD 26320 | Obsolete version of coecj 26318 as of 22-Sep-2025. Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) | ||
| Theorem | plyrecj 26321 | A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) | ||
| Theorem | plymul0or 26322 | Polynomial multiplication has no zero divisors. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹 ∘f · 𝐺) = 0𝑝 ↔ (𝐹 = 0𝑝 ∨ 𝐺 = 0𝑝))) | ||
| Theorem | ofmulrt 26323 | The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (◡(𝐹 ∘f · 𝐺) “ {0}) = ((◡𝐹 “ {0}) ∪ (◡𝐺 “ {0}))) | ||
| Theorem | plyreres 26324 | Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) | ||
| Theorem | dvply1 26325* | Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) | ||
| Theorem | dvply2g 26326 | The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11235. (Revised by GG, 30-Apr-2025.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
| Theorem | dvply2gOLD 26327 | Obsolete version of dvply2g 26326 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
| Theorem | dvply2 26328 | The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈ (Poly‘ℂ)) | ||
| Theorem | dvnply2 26329 | Polynomials have polynomials as derivatives of all orders. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) | ||
| Theorem | dvnply 26330 | Polynomials have polynomials as derivatives of all orders. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘ℂ)) | ||
| Theorem | plycpn 26331 | Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ)) | ||
| Syntax | cquot 26332 | Extend class notation to include the quotient of a polynomial division. |
| class quot | ||
| Definition | df-quot 26333* | Define the quotient function on polynomials. This is the 𝑞 of the expression 𝑓 = 𝑔 · 𝑞 + 𝑟 in the division algorithm. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (℩𝑞 ∈ (Poly‘ℂ)[(𝑓 ∘f − (𝑔 ∘f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)))) | ||
| Theorem | quotval 26334* | Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (℩𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) | ||
| Theorem | plydivlem1 26335* | Lemma for plydivalg 26341. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → 0 ∈ 𝑆) | ||
| Theorem | plydivlem2 26336* | Lemma for plydivalg 26341. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ ((𝜑 ∧ 𝑞 ∈ (Poly‘𝑆)) → 𝑅 ∈ (Poly‘𝑆)) | ||
| Theorem | plydivlem3 26337* | Lemma for plydivex 26339. Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | plydivlem4 26338* | Lemma for plydivex 26339. Induction step. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → (𝑀 − 𝑁) = 𝐷) & ⊢ (𝜑 → 𝐹 ≠ 0𝑝) & ⊢ 𝑈 = (𝑓 ∘f − (𝐺 ∘f · 𝑝)) & ⊢ 𝐻 = (𝑧 ∈ ℂ ↦ (((𝐴‘𝑀) / (𝐵‘𝑁)) · (𝑧↑𝐷))) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − 𝑁) < 𝐷) → ∃𝑝 ∈ (Poly‘𝑆)(𝑈 = 0𝑝 ∨ (deg‘𝑈) < 𝑁))) & ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < 𝑁)) | ||
| Theorem | plydivex 26339* | Lemma for plydivalg 26341. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | plydiveu 26340* | Lemma for plydivalg 26341. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → 𝑞 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) & ⊢ 𝑇 = (𝐹 ∘f − (𝐺 ∘f · 𝑝)) & ⊢ (𝜑 → 𝑝 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (𝑇 = 0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺))) ⇒ ⊢ (𝜑 → 𝑝 = 𝑞) | ||
| Theorem | plydivalg 26341* | The division algorithm on polynomials over a subfield 𝑆 of the complex numbers. If 𝐹 and 𝐺 ≠ 0 are polynomials over 𝑆, then there is a unique quotient polynomial 𝑞 such that the remainder 𝐹 − 𝐺 · 𝑞 is either zero or has degree less than 𝐺. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | quotlem 26342* | Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) | ||
| Theorem | quotcl 26343* | The quotient of two polynomials in a field 𝑆 is also in the field. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) ⇒ ⊢ (𝜑 → (𝐹 quot 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | quotcl2 26344 | Closure of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | quotdgr 26345 | Remainder property of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | plyremlem 26346 | Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) ⇒ ⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) | ||
| Theorem | plyrem 26347 | The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 16580). If a polynomial 𝐹 is divided by the linear factor 𝑥 − 𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹‘𝐴)})) | ||
| Theorem | facth 26348 | The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) | ||
| Theorem | fta1lem 26349* | Lemma for fta1 26350. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝})) & ⊢ (𝜑 → (deg‘𝐹) = (𝐷 + 1)) & ⊢ (𝜑 → 𝐴 ∈ (◡𝐹 “ {0})) & ⊢ (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((◡𝑔 “ {0}) ∈ Fin ∧ (♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔)))) ⇒ ⊢ (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) | ||
| Theorem | fta1 26350 | The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg(𝐹) roots. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑅 = (◡𝐹 “ {0}) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) | ||
| Theorem | quotcan 26351 | Exact division with a multiple. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐻 = (𝐹 ∘f · 𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹) | ||
| Theorem | vieta1lem1 26352* | Lemma for vieta1 26354. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐷 + 1) = 𝑁) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) & ⊢ 𝑄 = (𝐹 quot (Xp ∘f − (ℂ × {𝑧}))) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄))) | ||
| Theorem | vieta1lem2 26353* | Lemma for vieta1 26354: inductive step. Let 𝑧 be a root of 𝐹. Then 𝐹 = (Xp − 𝑧) · 𝑄 for some 𝑄 by the factor theorem, and 𝑄 is a degree- 𝐷 polynomial, so by the induction hypothesis Σ𝑥 ∈ (◡𝑄 “ 0)𝑥 = -(coeff‘𝑄)‘(𝐷 − 1) / (coeff‘𝑄)‘𝐷, so Σ𝑥 ∈ 𝑅𝑥 = 𝑧 − (coeff‘𝑄)‘ (𝐷 − 1) / (coeff‘𝑄)‘𝐷. Now the coefficients of 𝐹 are 𝐴‘(𝐷 + 1) = (coeff‘𝑄)‘𝐷 and 𝐴‘𝐷 = Σ𝑘 ∈ (0...𝐷)(coeff‘Xp − 𝑧)‘𝑘 · (coeff‘𝑄) ‘(𝐷 − 𝑘), which works out to -𝑧 · (coeff‘𝑄)‘𝐷 + (coeff‘𝑄)‘(𝐷 − 1), so putting it all together we have Σ𝑥 ∈ 𝑅𝑥 = -𝐴‘𝐷 / 𝐴‘(𝐷 + 1) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐷 + 1) = 𝑁) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) & ⊢ 𝑄 = (𝐹 quot (Xp ∘f − (ℂ × {𝑧}))) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | ||
| Theorem | vieta1 26354* | The first-order Vieta's formula (see http://en.wikipedia.org/wiki/Vieta%27s_formulas). If a polynomial of degree 𝑁 has 𝑁 distinct roots, then the sum over these roots can be calculated as -𝐴(𝑁 − 1) / 𝐴(𝑁). (If the roots are not distinct, then this formula is still true but must double-count some of the roots according to their multiplicities.) (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | ||
| Theorem | plyexmo 26355* | An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.) |
| ⊢ ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝 ↾ 𝐷) = 𝐹)) | ||
| Syntax | caa 26356 | Extend class notation to include the set of algebraic numbers. |
| class 𝔸 | ||
| Definition | df-aa 26357 | Define the set of algebraic numbers. An algebraic number is a root of a nonzero polynomial over the integers. Here we construct it as the union of all kernels (preimages of {0}) of all polynomials in (Poly‘ℤ), except the zero polynomial 0𝑝. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝔸 = ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) | ||
| Theorem | elaa 26358* | Elementhood in the set of algebraic numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | ||
| Theorem | aacn 26359 | An algebraic number is a complex number. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ) | ||
| Theorem | aasscn 26360 | The algebraic numbers are a subset of the complex numbers. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝔸 ⊆ ℂ | ||
| Theorem | elqaalem1 26361* | Lemma for elqaa 26364. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) | ||
| Theorem | elqaalem2 26362* | Lemma for elqaa 26364. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) & ⊢ 𝑃 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁‘𝐾))) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁‘𝐾)) = 0) | ||
| Theorem | elqaalem3 26363* | Lemma for elqaa 26364. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝔸) | ||
| Theorem | elqaa 26364* | The set of numbers generated by the roots of polynomials in the rational numbers is the same as the set of algebraic numbers, which by elaa 26358 are defined only in terms of polynomials over the integers. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof shortened by AV, 3-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | ||
| Theorem | qaa 26365 | Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸) | ||
| Theorem | qssaa 26366 | The rational numbers are contained in the algebraic numbers. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ ℚ ⊆ 𝔸 | ||
| Theorem | iaa 26367 | The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ i ∈ 𝔸 | ||
| Theorem | aareccl 26368 | The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸) | ||
| Theorem | aacjcl 26369 | The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) | ||
| Theorem | aannenlem1 26370* | Lemma for aannen 26373. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ (𝐴 ∈ ℕ0 → (𝐻‘𝐴) ∈ Fin) | ||
| Theorem | aannenlem2 26371* | Lemma for aannen 26373. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ 𝔸 = ∪ ran 𝐻 | ||
| Theorem | aannenlem3 26372* | The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ 𝔸 ≈ ℕ | ||
| Theorem | aannen 26373 | The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝔸 ≈ ℕ | ||
| Theorem | aalioulem1 26374 | Lemma for aaliou 26380. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑋 ∈ ℤ) & ⊢ (𝜑 → 𝑌 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ) | ||
| Theorem | aalioulem2 26375* | Lemma for aaliou 26380. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
| Theorem | aalioulem3 26376* | Lemma for aaliou 26380. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑟 ∈ ℝ ((abs‘(𝐴 − 𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑟))) ≤ (abs‘(𝐴 − 𝑟)))) | ||
| Theorem | aalioulem4 26377* | Lemma for aaliou 26380. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
| Theorem | aalioulem5 26378* | Lemma for aaliou 26380. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
| Theorem | aalioulem6 26379* | Lemma for aaliou 26380. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | aaliou 26380* | Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | geolim3 26381* | Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐵) < 1) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵))) | ||
| Theorem | aaliou2 26382* | Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | aaliou2b 26383* | Liouville's approximation theorem extended to complex 𝐴. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | aaliou3lem1 26384* | Lemma for aaliou3 26393. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) | ||
| Theorem | aaliou3lem2 26385* | Lemma for aaliou3 26393. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝐵) ∈ (0(,](𝐺‘𝐵))) | ||
| Theorem | aaliou3lem3 26386* | Lemma for aaliou3 26393. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ≤ (2 · (2↑-(!‘𝐴))))) | ||
| Theorem | aaliou3lem8 26387* | Lemma for aaliou3 26393. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴))) | ||
| Theorem | aaliou3lem4 26388* | Lemma for aaliou3 26393. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ 𝐿 ∈ ℝ | ||
| Theorem | aaliou3lem5 26389* | Lemma for aaliou3 26393. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) ∈ ℝ) | ||
| Theorem | aaliou3lem6 26390* | Lemma for aaliou3 26393. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) · (2↑(!‘𝐴))) ∈ ℤ) | ||
| Theorem | aaliou3lem7 26391* | Lemma for aaliou3 26393. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻‘𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) | ||
| Theorem | aaliou3lem9 26392* | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ ¬ 𝐿 ∈ 𝔸 | ||
| Theorem | aaliou3 26393 | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 23-Nov-2014.) |
| ⊢ Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) ∉ 𝔸 | ||
| Syntax | ctayl 26394 | Taylor polynomial of a function. |
| class Tayl | ||
| Syntax | cana 26395 | The class of analytic functions. |
| class Ana | ||
| Definition | df-tayl 26396* | Define the Taylor polynomial or Taylor series of a function. TODO-AV: 𝑛 ∈ (ℕ0 ∪ {+∞}) should be replaced by 𝑛 ∈ ℕ0*. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 ∈ ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) | ||
| Definition | df-ana 26397* | Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) | ||
| Theorem | taylfvallem1 26398* | Lemma for taylfval 26400. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | ||
| Theorem | taylfvallem 26399* | Lemma for taylfval 26400. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)))) ⊆ ℂ) | ||
| Theorem | taylfval 26400* |
Define the Taylor polynomial of a function. The constant Tayl is a
function of five arguments: 𝑆 is the base set with respect to
evaluate the derivatives (generally ℝ or
ℂ), 𝐹 is the
function we are approximating, at point 𝐵, to order 𝑁. The
result is a polynomial function of 𝑥.
This "extended" version of taylpfval 26406 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |