| Metamath
Proof Explorer Theorem List (p. 264 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | taylpf 26301 | The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇:ℂ⟶ℂ) | ||
| Theorem | taylpval 26302* | Value of the Taylor polynomial. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑇‘𝑋) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))) | ||
| Theorem | taylply2 26303* | The Taylor polynomial is a polynomial of degree (at most) 𝑁. This version of taylply 26305 shows that the coefficients of 𝑇 are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11093. (Revised by GG, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝐷 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| Theorem | taylply2OLD 26304* | Obsolete version of taylply2 26303 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝐷 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| Theorem | taylply 26305 | The Taylor polynomial is a polynomial of degree (at most) 𝑁. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| Theorem | dvtaylp 26306 | The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1))) ⇒ ⊢ (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵)) | ||
| Theorem | dvntaylp 26307 | The 𝑀-th derivative of the Taylor polynomial is the Taylor polynomial of the 𝑀-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀))) ⇒ ⊢ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) | ||
| Theorem | dvntaylp0 26308 | The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) | ||
| Theorem | taylthlem1 26309* | Lemma for taylth 26312. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'Hôpital's rule. However, since our proof of L'Hôpital assumes that 𝑆 = ℝ, we can only do this part generically, and for taylth 26312 itself we must restrict to ℝ. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑛))‘𝑦)) / ((𝑦 − 𝐵)↑𝑛))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑛 + 1)))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) | ||
| Theorem | taylthlem2 26310* | Lemma for taylth 26312. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11093. (Revised by GG, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) & ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) | ||
| Theorem | taylthlem2OLD 26311* | Obsolete version of taylthlem2 26310 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) & ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) | ||
| Theorem | taylth 26312* | Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥 − 𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) ⇒ ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) | ||
| Syntax | culm 26313 | Extend class notation to include the uniform convergence predicate. |
| class ⇝𝑢 | ||
| Definition | df-ulm 26314* | Define the uniform convergence of a sequence of functions. Here 𝐹(⇝𝑢‘𝑆)𝐺 if 𝐹 is a sequence of functions 𝐹(𝑛), 𝑛 ∈ ℕ defined on 𝑆 and 𝐺 is a function on 𝑆, and for every 0 < 𝑥 there is a 𝑗 such that the functions 𝐹(𝑘) for 𝑗 ≤ 𝑘 are all uniformly within 𝑥 of 𝐺 on the domain 𝑆. Compare with df-clim 15397. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ ⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) | ||
| Theorem | ulmrel 26315 | The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ Rel (⇝𝑢‘𝑆) | ||
| Theorem | ulmscl 26316 | Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | ||
| Theorem | ulmval 26317* | Express the predicate: The sequence of functions 𝐹 converges uniformly to 𝐺 on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝑆 ∈ 𝑉 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) | ||
| Theorem | ulmcl 26318 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | ||
| Theorem | ulmf 26319* | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | ||
| Theorem | ulmpm 26320 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) | ||
| Theorem | ulmf2 26321 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | ||
| Theorem | ulm2 26322* | Simplify ulmval 26317 when 𝐹 and 𝐺 are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) & ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
| Theorem | ulmi 26323* | The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) | ||
| Theorem | ulmclm 26324* | A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) | ||
| Theorem | ulmres 26325 | A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ (𝐹 ↾ 𝑊)(⇝𝑢‘𝑆)𝐺)) | ||
| Theorem | ulmshftlem 26326* | Lemma for ulmshft 26327. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑊 ↦ (𝐹‘(𝑛 − 𝐾)))) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐻(⇝𝑢‘𝑆)𝐺)) | ||
| Theorem | ulmshft 26327* | A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑊 ↦ (𝐹‘(𝑛 − 𝐾)))) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 𝐻(⇝𝑢‘𝑆)𝐺)) | ||
| Theorem | ulm0 26328 | Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) ⇒ ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) | ||
| Theorem | ulmuni 26329 | A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
| ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) | ||
| Theorem | ulmdm 26330 | Two ways to express that a function has a limit. (The expression ((⇝𝑢‘𝑆)‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 5-Jul-2017.) |
| ⊢ (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ 𝐹(⇝𝑢‘𝑆)((⇝𝑢‘𝑆)‘𝐹)) | ||
| Theorem | ulmcaulem 26331* | Lemma for ulmcau 26332 and ulmcau2 26333: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 15265. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) | ||
| Theorem | ulmcau 26332* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗 ≤ 𝑘 the functions 𝐹(𝑘) and 𝐹(𝑗) are uniformly within 𝑥 of each other on 𝑆. This is the four-quantifier version, see ulmcau2 26333 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) | ||
| Theorem | ulmcau2 26333* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗 ≤ 𝑘, 𝑚 the functions 𝐹(𝑘) and 𝐹(𝑚) are uniformly within 𝑥 of each other on 𝑆. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) | ||
| Theorem | ulmss 26334* | A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))(⇝𝑢‘𝑇)(𝐺 ↾ 𝑇)) | ||
| Theorem | ulmbdd 26335* | A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘((𝐹‘𝑘)‘𝑧)) ≤ 𝑥) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝐺‘𝑧)) ≤ 𝑥) | ||
| Theorem | ulmcn 26336 | A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(𝑆–cn→ℂ)) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | ulmdvlem1 26337* | Lemma for ulmdv 26340. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑈 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑈 < 𝑊) & ⊢ ((𝜑 ∧ 𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → (abs‘(𝑌 − 𝐶)) < 𝑈) & ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝜓) → ∀𝑚 ∈ (ℤ≥‘𝑁)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑁))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑅 / 2) / 2)) & ⊢ ((𝜑 ∧ 𝜓) → (abs‘(((𝑆 D (𝐹‘𝑁))‘𝐶) − (𝐻‘𝐶))) < (𝑅 / 2)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑌 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → 𝑌 ≠ 𝐶) & ⊢ ((𝜑 ∧ 𝜓) → ((abs‘(𝑌 − 𝐶)) < 𝑊 → (abs‘(((((𝐹‘𝑁)‘𝑌) − ((𝐹‘𝑁)‘𝐶)) / (𝑌 − 𝐶)) − ((𝑆 D (𝐹‘𝑁))‘𝐶))) < ((𝑅 / 2) / 2))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (abs‘((((𝐺‘𝑌) − (𝐺‘𝐶)) / (𝑌 − 𝐶)) − (𝐻‘𝐶))) < 𝑅) | ||
| Theorem | ulmdvlem2 26338* | Lemma for ulmdv 26340. (Contributed by Mario Carneiro, 8-May-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | ||
| Theorem | ulmdvlem3 26339* | Lemma for ulmdv 26340. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧(𝑆 D 𝐺)(𝐻‘𝑧)) | ||
| Theorem | ulmdv 26340* | If 𝐹 is a sequence of differentiable functions on 𝑋 which converge pointwise to 𝐺, and the derivatives of 𝐹(𝑛) converge uniformly to 𝐻, then 𝐺 is differentiable with derivative 𝐻. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) | ||
| Theorem | mtest 26341* | The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) & ⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢‘𝑆)) | ||
| Theorem | mtestbdd 26342* | Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) & ⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝑇‘𝑧)) ≤ 𝑥) | ||
| Theorem | mbfulm 26343 | A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25597.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
| Theorem | iblulm 26344 | A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐿1) | ||
| Theorem | itgulm 26345* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺‘𝑥) d𝑥) | ||
| Theorem | itgulm2 26346* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ 𝐿1) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ 𝐴))(⇝𝑢‘𝑆)(𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝑆 ↦ 𝐵) ∈ 𝐿1 ∧ (𝑘 ∈ 𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥)) | ||
| Theorem | pserval 26347* | Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) ⇒ ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) | ||
| Theorem | pserval2 26348* | Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) ⇒ ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) | ||
| Theorem | psergf 26349* | The sequence of terms in the infinite sequence defining a power series for fixed 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) | ||
| Theorem | radcnvlem1 26350* | Lemma for radcnvlt1 26355, radcnvle 26357. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋, even if the terms in the sequence are multiplied by 𝑛. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) & ⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ ) | ||
| Theorem | radcnvlem2 26351* | Lemma for radcnvlt1 26355, radcnvle 26357. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ) | ||
| Theorem | radcnvlem3 26352* | Lemma for radcnvlt1 26355, radcnvle 26357. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges at 𝑋. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) | ||
| Theorem | radcnv0 26353* | Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) ⇒ ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) | ||
| Theorem | radcnvcl 26354* | The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ⇒ ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) | ||
| Theorem | radcnvlt1 26355* | If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges absolutely at 𝑋, and also converges when the series is multiplied by 𝑛. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) & ⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) ⇒ ⊢ (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ )) | ||
| Theorem | radcnvlt2 26356* | If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) | ||
| Theorem | radcnvle 26357* | If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (abs‘𝑋) ≤ 𝑅) | ||
| Theorem | dvradcnv 26358* | The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋↑𝑛))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ ) | ||
| Theorem | pserulm 26359* | If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) | ||
| Theorem | psercn2 26360* | Since by pserulm 26359 the series converges uniformly, it is also continuous by ulmcn 26336. (Contributed by Mario Carneiro, 3-Mar-2015.) Avoid ax-mulf 11093. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | psercn2OLD 26361* | Obsolete version of psercn2 26360 as of 16-Apr-2025. (Contributed by Mario Carneiro, 3-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | psercnlem2 26362* | Lemma for psercn 26364. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) | ||
| Theorem | psercnlem1 26363* | Lemma for psercn 26364. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | ||
| Theorem | psercn 26364* | An infinite series converges to a continuous function on the open disk of radius 𝑅, where 𝑅 is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | pserdvlem1 26365* | Lemma for pserdv 26367. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) | ||
| Theorem | pserdvlem2 26366* | Lemma for pserdv 26367. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | ||
| Theorem | pserdv 26367* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | ||
| Theorem | pserdv2 26368* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) | ||
| Theorem | abelthlem1 26369* | Lemma for abelth 26379. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) | ||
| Theorem | abelthlem2 26370* | Lemma for abelth 26379. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⇒ ⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))) | ||
| Theorem | abelthlem3 26371* | Lemma for abelth 26379. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) | ||
| Theorem | abelthlem4 26372* | Lemma for abelth 26379. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) | ||
| Theorem | abelthlem5 26373* | Lemma for abelth 26379. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) | ||
| Theorem | abelthlem6 26374* | Lemma for abelth 26379. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) | ||
| Theorem | abelthlem7a 26375* | Lemma for abelth 26379. (Contributed by Mario Carneiro, 8-May-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) ⇒ ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) | ||
| Theorem | abelthlem7 26376* | Lemma for abelth 26379. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅) & ⊢ (𝜑 → (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) ⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑋)) < ((𝑀 + 1) · 𝑅)) | ||
| Theorem | abelthlem8 26377* | Lemma for abelth 26379. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
| Theorem | abelthlem9 26378* | Lemma for abelth 26379. By adjusting the constant term, we can assume that the entire series converges to 0. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
| Theorem | abelth 26379* | Abel's theorem. If the power series Σ𝑛 ∈ ℕ0𝐴(𝑛)(𝑥↑𝑛) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle 𝑆 (note that the 𝑀 = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on 𝑆 ∖ {1} follows more generally from psercn 26364.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
| Theorem | abelth2 26380* | Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((0[,]1)–cn→ℂ)) | ||
| Theorem | efcn 26381 | The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| ⊢ exp ∈ (ℂ–cn→ℂ) | ||
| Theorem | sincn 26382 | Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
| ⊢ sin ∈ (ℂ–cn→ℂ) | ||
| Theorem | coscn 26383 | Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
| ⊢ cos ∈ (ℂ–cn→ℂ) | ||
| Theorem | reeff1olem 26384* | Lemma for reeff1o 26385. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) | ||
| Theorem | reeff1o 26385 | The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | ||
| Theorem | reefiso 26386 | The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.) |
| ⊢ (exp ↾ ℝ) Isom < , < (ℝ, ℝ+) | ||
| Theorem | efcvx 26387 | The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵)))) | ||
| Theorem | reefgim 26388 | The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) ⇒ ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) | ||
| Theorem | pilem1 26389 | Lemma for pire 26394, pigt2lt4 26392 and sinpi 26393. (Contributed by Mario Carneiro, 9-May-2014.) |
| ⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0)) | ||
| Theorem | pilem2 26390 | Lemma for pire 26394, pigt2lt4 26392 and sinpi 26393. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ (2(,)4)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (sin‘𝐴) = 0) & ⊢ (𝜑 → (sin‘𝐵) = 0) ⇒ ⊢ (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵) | ||
| Theorem | pilem3 26391 | Lemma for pire 26394, pigt2lt4 26392 and sinpi 26393. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) (Proof shortened by BJ, 30-Jun-2022.) |
| ⊢ (π ∈ (2(,)4) ∧ (sin‘π) = 0) | ||
| Theorem | pigt2lt4 26392 | π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| ⊢ (2 < π ∧ π < 4) | ||
| Theorem | sinpi 26393 | The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ (sin‘π) = 0 | ||
| Theorem | pire 26394 | π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ π ∈ ℝ | ||
| Theorem | picn 26395 | π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ π ∈ ℂ | ||
| Theorem | pipos 26396 | π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| ⊢ 0 < π | ||
| Theorem | pine0 26397 | π is nonzero. (Contributed by SN, 25-Apr-2025.) |
| ⊢ π ≠ 0 | ||
| Theorem | pirp 26398 | π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ π ∈ ℝ+ | ||
| Theorem | negpicn 26399 | -π is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -π ∈ ℂ | ||
| Theorem | sinhalfpilem 26400 | Lemma for sinhalfpi 26405 and coshalfpi 26406. (Contributed by Paul Chapman, 23-Jan-2008.) |
| ⊢ ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |