Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvacos Structured version   Visualization version   GIF version

Theorem dvacos 35091
 Description: Derivative of arccosine. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
Assertion
Ref Expression
dvacos (ℂ D (arccos ↾ 𝐷)) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
Distinct variable group:   𝑥,𝐷

Proof of Theorem dvacos
StepHypRef Expression
1 df-acos 25459 . . . . 5 arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥)))
21reseq1i 5836 . . . 4 (arccos ↾ 𝐷) = ((𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) ↾ 𝐷)
3 dvasin.d . . . . . 6 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
4 difss 4094 . . . . . 6 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ
53, 4eqsstri 3987 . . . . 5 𝐷 ⊆ ℂ
6 resmpt 5892 . . . . 5 (𝐷 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) ↾ 𝐷) = (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥))))
75, 6ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) ↾ 𝐷) = (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))
82, 7eqtri 2847 . . 3 (arccos ↾ 𝐷) = (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))
98oveq2i 7160 . 2 (ℂ D (arccos ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥))))
10 cnelprrecn 10628 . . . . 5 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
12 halfpire 25064 . . . . . 6 (π / 2) ∈ ℝ
1312recni 10653 . . . . 5 (π / 2) ∈ ℂ
1413a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → (π / 2) ∈ ℂ)
15 c0ex 10633 . . . . 5 0 ∈ V
1615a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → 0 ∈ V)
1713a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (π / 2) ∈ ℂ)
1815a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → 0 ∈ V)
1913a1i 11 . . . . . 6 (⊤ → (π / 2) ∈ ℂ)
2011, 19dvmptc 24568 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (π / 2))) = (𝑥 ∈ ℂ ↦ 0))
215a1i 11 . . . . 5 (⊤ → 𝐷 ⊆ ℂ)
22 eqid 2824 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2322cnfldtopon 23395 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2423toponrestid 21533 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
2522recld2 23426 . . . . . . . . . 10 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
26 neg1rr 11749 . . . . . . . . . . . 12 -1 ∈ ℝ
27 iocmnfcld 23381 . . . . . . . . . . . 12 (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))))
2826, 27ax-mp 5 . . . . . . . . . . 11 (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))
2922tgioo2 23415 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3029fveq2i 6664 . . . . . . . . . . 11 (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
3128, 30eleqtri 2914 . . . . . . . . . 10 (-∞(,]-1) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
32 restcldr 21786 . . . . . . . . . 10 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (-∞(,]-1) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → (-∞(,]-1) ∈ (Clsd‘(TopOpen‘ℂfld)))
3325, 31, 32mp2an 691 . . . . . . . . 9 (-∞(,]-1) ∈ (Clsd‘(TopOpen‘ℂfld))
34 1re 10639 . . . . . . . . . . . 12 1 ∈ ℝ
35 icopnfcld 23380 . . . . . . . . . . . 12 (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
3634, 35ax-mp 5 . . . . . . . . . . 11 (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))
3736, 30eleqtri 2914 . . . . . . . . . 10 (1[,)+∞) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
38 restcldr 21786 . . . . . . . . . 10 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (1[,)+∞) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → (1[,)+∞) ∈ (Clsd‘(TopOpen‘ℂfld)))
3925, 37, 38mp2an 691 . . . . . . . . 9 (1[,)+∞) ∈ (Clsd‘(TopOpen‘ℂfld))
40 uncld 21653 . . . . . . . . 9 (((-∞(,]-1) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (1[,)+∞) ∈ (Clsd‘(TopOpen‘ℂfld))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)))
4133, 39, 40mp2an 691 . . . . . . . 8 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))
4223toponunii 21528 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
4342cldopn 21643 . . . . . . . 8 (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
4441, 43ax-mp 5 . . . . . . 7 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)
453, 44eqeltri 2912 . . . . . 6 𝐷 ∈ (TopOpen‘ℂfld)
4645a1i 11 . . . . 5 (⊤ → 𝐷 ∈ (TopOpen‘ℂfld))
4711, 17, 18, 20, 21, 24, 22, 46dvmptres 24573 . . . 4 (⊤ → (ℂ D (𝑥𝐷 ↦ (π / 2))) = (𝑥𝐷 ↦ 0))
485sseli 3949 . . . . . 6 (𝑥𝐷𝑥 ∈ ℂ)
49 asincl 25466 . . . . . 6 (𝑥 ∈ ℂ → (arcsin‘𝑥) ∈ ℂ)
5048, 49syl 17 . . . . 5 (𝑥𝐷 → (arcsin‘𝑥) ∈ ℂ)
5150adantl 485 . . . 4 ((⊤ ∧ 𝑥𝐷) → (arcsin‘𝑥) ∈ ℂ)
52 ovexd 7184 . . . 4 ((⊤ ∧ 𝑥𝐷) → (1 / (√‘(1 − (𝑥↑2)))) ∈ V)
533dvasin 35090 . . . . 5 (ℂ D (arcsin ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / (√‘(1 − (𝑥↑2)))))
54 asinf 25465 . . . . . . . 8 arcsin:ℂ⟶ℂ
5554a1i 11 . . . . . . 7 (⊤ → arcsin:ℂ⟶ℂ)
5655, 21feqresmpt 6725 . . . . . 6 (⊤ → (arcsin ↾ 𝐷) = (𝑥𝐷 ↦ (arcsin‘𝑥)))
5756oveq2d 7165 . . . . 5 (⊤ → (ℂ D (arcsin ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ (arcsin‘𝑥))))
5853, 57syl5reqr 2874 . . . 4 (⊤ → (ℂ D (𝑥𝐷 ↦ (arcsin‘𝑥))) = (𝑥𝐷 ↦ (1 / (√‘(1 − (𝑥↑2))))))
5911, 14, 16, 47, 51, 52, 58dvmptsub 24577 . . 3 (⊤ → (ℂ D (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))) = (𝑥𝐷 ↦ (0 − (1 / (√‘(1 − (𝑥↑2)))))))
6059mptru 1545 . 2 (ℂ D (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))) = (𝑥𝐷 ↦ (0 − (1 / (√‘(1 − (𝑥↑2))))))
61 df-neg 10871 . . . 4 -(1 / (√‘(1 − (𝑥↑2)))) = (0 − (1 / (√‘(1 − (𝑥↑2)))))
62 1cnd 10634 . . . . 5 (𝑥𝐷 → 1 ∈ ℂ)
63 ax-1cn 10593 . . . . . . 7 1 ∈ ℂ
6448sqcld 13513 . . . . . . 7 (𝑥𝐷 → (𝑥↑2) ∈ ℂ)
65 subcl 10883 . . . . . . 7 ((1 ∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 − (𝑥↑2)) ∈ ℂ)
6663, 64, 65sylancr 590 . . . . . 6 (𝑥𝐷 → (1 − (𝑥↑2)) ∈ ℂ)
6766sqrtcld 14797 . . . . 5 (𝑥𝐷 → (√‘(1 − (𝑥↑2))) ∈ ℂ)
68 eldifn 4090 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → ¬ 𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)))
6968, 3eleq2s 2934 . . . . . . 7 (𝑥𝐷 → ¬ 𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)))
70 mnfxr 10696 . . . . . . . . . . . 12 -∞ ∈ ℝ*
7126rexri 10697 . . . . . . . . . . . 12 -1 ∈ ℝ*
72 mnflt 12515 . . . . . . . . . . . . 13 (-1 ∈ ℝ → -∞ < -1)
7326, 72ax-mp 5 . . . . . . . . . . . 12 -∞ < -1
74 ubioc1 12787 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ -∞ < -1) → -1 ∈ (-∞(,]-1))
7570, 71, 73, 74mp3an 1458 . . . . . . . . . . 11 -1 ∈ (-∞(,]-1)
76 eleq1 2903 . . . . . . . . . . 11 (𝑥 = -1 → (𝑥 ∈ (-∞(,]-1) ↔ -1 ∈ (-∞(,]-1)))
7775, 76mpbiri 261 . . . . . . . . . 10 (𝑥 = -1 → 𝑥 ∈ (-∞(,]-1))
7834rexri 10697 . . . . . . . . . . . 12 1 ∈ ℝ*
79 pnfxr 10693 . . . . . . . . . . . 12 +∞ ∈ ℝ*
80 ltpnf 12512 . . . . . . . . . . . . 13 (1 ∈ ℝ → 1 < +∞)
8134, 80ax-mp 5 . . . . . . . . . . . 12 1 < +∞
82 lbico1 12788 . . . . . . . . . . . 12 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1 < +∞) → 1 ∈ (1[,)+∞))
8378, 79, 81, 82mp3an 1458 . . . . . . . . . . 11 1 ∈ (1[,)+∞)
84 eleq1 2903 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 ∈ (1[,)+∞) ↔ 1 ∈ (1[,)+∞)))
8583, 84mpbiri 261 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 ∈ (1[,)+∞))
8677, 85orim12i 906 . . . . . . . . 9 ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞)))
8786orcoms 869 . . . . . . . 8 ((𝑥 = 1 ∨ 𝑥 = -1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞)))
88 elun 4111 . . . . . . . 8 (𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)) ↔ (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞)))
8987, 88sylibr 237 . . . . . . 7 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)))
9069, 89nsyl 142 . . . . . 6 (𝑥𝐷 → ¬ (𝑥 = 1 ∨ 𝑥 = -1))
91 sq1 13563 . . . . . . . . . 10 (1↑2) = 1
92 1cnd 10634 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → 1 ∈ ℂ)
93 sqcl 13489 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
9493adantr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) ∈ ℂ)
9563, 93, 65sylancr 590 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (1 − (𝑥↑2)) ∈ ℂ)
9695adantr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) ∈ ℂ)
97 simpr 488 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (√‘(1 − (𝑥↑2))) = 0)
9896, 97sqr00d 14801 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) = 0)
9992, 94, 98subeq0d 11003 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → 1 = (𝑥↑2))
10091, 99syl5req 2872 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) = (1↑2))
101100ex 416 . . . . . . . 8 (𝑥 ∈ ℂ → ((√‘(1 − (𝑥↑2))) = 0 → (𝑥↑2) = (1↑2)))
102 sqeqor 13583 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥↑2) = (1↑2) ↔ (𝑥 = 1 ∨ 𝑥 = -1)))
10363, 102mpan2 690 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) = (1↑2) ↔ (𝑥 = 1 ∨ 𝑥 = -1)))
104101, 103sylibd 242 . . . . . . 7 (𝑥 ∈ ℂ → ((√‘(1 − (𝑥↑2))) = 0 → (𝑥 = 1 ∨ 𝑥 = -1)))
105104necon3bd 3028 . . . . . 6 (𝑥 ∈ ℂ → (¬ (𝑥 = 1 ∨ 𝑥 = -1) → (√‘(1 − (𝑥↑2))) ≠ 0))
10648, 90, 105sylc 65 . . . . 5 (𝑥𝐷 → (√‘(1 − (𝑥↑2))) ≠ 0)
10762, 67, 106divnegd 11427 . . . 4 (𝑥𝐷 → -(1 / (√‘(1 − (𝑥↑2)))) = (-1 / (√‘(1 − (𝑥↑2)))))
10861, 107syl5eqr 2873 . . 3 (𝑥𝐷 → (0 − (1 / (√‘(1 − (𝑥↑2))))) = (-1 / (√‘(1 − (𝑥↑2)))))
109108mpteq2ia 5143 . 2 (𝑥𝐷 ↦ (0 − (1 / (√‘(1 − (𝑥↑2)))))) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
1109, 60, 1093eqtri 2851 1 (ℂ D (arccos ↾ 𝐷)) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538  ⊤wtru 1539   ∈ wcel 2115   ≠ wne 3014  Vcvv 3480   ∖ cdif 3916   ∪ cun 3917   ⊆ wss 3919  {cpr 4552   class class class wbr 5052   ↦ cmpt 5132  ran crn 5543   ↾ cres 5544  ⟶wf 6339  ‘cfv 6343  (class class class)co 7149  ℂcc 10533  ℝcr 10534  0cc0 10535  1c1 10536  +∞cpnf 10670  -∞cmnf 10671  ℝ*cxr 10672   < clt 10673   − cmin 10868  -cneg 10869   / cdiv 11295  2c2 11689  (,)cioo 12735  (,]cioc 12736  [,)cico 12737  ↑cexp 13434  √csqrt 14592  πcpi 15420   ↾t crest 16694  TopOpenctopn 16695  topGenctg 16711  ℂfldccnfld 20098  Clsdccld 21628   D cdv 24473  arcsincasin 25455  arccoscacos 25456 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ioo 12739  df-ioc 12740  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-fl 13166  df-mod 13242  df-seq 13374  df-exp 13435  df-fac 13639  df-bc 13668  df-hash 13696  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20090  df-xmet 20091  df-met 20092  df-bl 20093  df-mopn 20094  df-fbas 20095  df-fg 20096  df-cnfld 20099  df-top 21506  df-topon 21523  df-topsp 21545  df-bases 21558  df-cld 21631  df-ntr 21632  df-cls 21633  df-nei 21710  df-lp 21748  df-perf 21749  df-cn 21839  df-cnp 21840  df-haus 21927  df-cmp 21999  df-tx 22174  df-hmeo 22367  df-fil 22458  df-fm 22550  df-flim 22551  df-flf 22552  df-xms 22934  df-ms 22935  df-tms 22936  df-cncf 23490  df-limc 24476  df-dv 24477  df-log 25155  df-cxp 25156  df-asin 25458  df-acos 25459 This theorem is referenced by:  dvreacos  35093
 Copyright terms: Public domain W3C validator