Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvacos Structured version   Visualization version   GIF version

Theorem dvacos 37712
Description: Derivative of arccosine. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
Assertion
Ref Expression
dvacos (ℂ D (arccos ↾ 𝐷)) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
Distinct variable group:   𝑥,𝐷

Proof of Theorem dvacos
StepHypRef Expression
1 df-acos 26909 . . . . 5 arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥)))
21reseq1i 5993 . . . 4 (arccos ↾ 𝐷) = ((𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) ↾ 𝐷)
3 dvasin.d . . . . . 6 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
4 difss 4136 . . . . . 6 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ
53, 4eqsstri 4030 . . . . 5 𝐷 ⊆ ℂ
6 resmpt 6055 . . . . 5 (𝐷 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) ↾ 𝐷) = (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥))))
75, 6ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) ↾ 𝐷) = (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))
82, 7eqtri 2765 . . 3 (arccos ↾ 𝐷) = (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))
98oveq2i 7442 . 2 (ℂ D (arccos ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥))))
10 cnelprrecn 11248 . . . . 5 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
12 halfpire 26506 . . . . . 6 (π / 2) ∈ ℝ
1312recni 11275 . . . . 5 (π / 2) ∈ ℂ
1413a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → (π / 2) ∈ ℂ)
15 c0ex 11255 . . . . 5 0 ∈ V
1615a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → 0 ∈ V)
1713a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (π / 2) ∈ ℂ)
1815a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → 0 ∈ V)
1913a1i 11 . . . . . 6 (⊤ → (π / 2) ∈ ℂ)
2011, 19dvmptc 25996 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (π / 2))) = (𝑥 ∈ ℂ ↦ 0))
215a1i 11 . . . . 5 (⊤ → 𝐷 ⊆ ℂ)
22 eqid 2737 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2322cnfldtopon 24803 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2423toponrestid 22927 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
2522recld2 24836 . . . . . . . . . 10 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
26 neg1rr 12381 . . . . . . . . . . . 12 -1 ∈ ℝ
27 iocmnfcld 24789 . . . . . . . . . . . 12 (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))))
2826, 27ax-mp 5 . . . . . . . . . . 11 (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))
29 tgioo4 24826 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3029fveq2i 6909 . . . . . . . . . . 11 (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
3128, 30eleqtri 2839 . . . . . . . . . 10 (-∞(,]-1) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
32 restcldr 23182 . . . . . . . . . 10 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (-∞(,]-1) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → (-∞(,]-1) ∈ (Clsd‘(TopOpen‘ℂfld)))
3325, 31, 32mp2an 692 . . . . . . . . 9 (-∞(,]-1) ∈ (Clsd‘(TopOpen‘ℂfld))
34 1re 11261 . . . . . . . . . . . 12 1 ∈ ℝ
35 icopnfcld 24788 . . . . . . . . . . . 12 (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
3634, 35ax-mp 5 . . . . . . . . . . 11 (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))
3736, 30eleqtri 2839 . . . . . . . . . 10 (1[,)+∞) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
38 restcldr 23182 . . . . . . . . . 10 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (1[,)+∞) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → (1[,)+∞) ∈ (Clsd‘(TopOpen‘ℂfld)))
3925, 37, 38mp2an 692 . . . . . . . . 9 (1[,)+∞) ∈ (Clsd‘(TopOpen‘ℂfld))
40 uncld 23049 . . . . . . . . 9 (((-∞(,]-1) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (1[,)+∞) ∈ (Clsd‘(TopOpen‘ℂfld))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)))
4133, 39, 40mp2an 692 . . . . . . . 8 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))
4223toponunii 22922 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
4342cldopn 23039 . . . . . . . 8 (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
4441, 43ax-mp 5 . . . . . . 7 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)
453, 44eqeltri 2837 . . . . . 6 𝐷 ∈ (TopOpen‘ℂfld)
4645a1i 11 . . . . 5 (⊤ → 𝐷 ∈ (TopOpen‘ℂfld))
4711, 17, 18, 20, 21, 24, 22, 46dvmptres 26001 . . . 4 (⊤ → (ℂ D (𝑥𝐷 ↦ (π / 2))) = (𝑥𝐷 ↦ 0))
485sseli 3979 . . . . . 6 (𝑥𝐷𝑥 ∈ ℂ)
49 asincl 26916 . . . . . 6 (𝑥 ∈ ℂ → (arcsin‘𝑥) ∈ ℂ)
5048, 49syl 17 . . . . 5 (𝑥𝐷 → (arcsin‘𝑥) ∈ ℂ)
5150adantl 481 . . . 4 ((⊤ ∧ 𝑥𝐷) → (arcsin‘𝑥) ∈ ℂ)
52 ovexd 7466 . . . 4 ((⊤ ∧ 𝑥𝐷) → (1 / (√‘(1 − (𝑥↑2)))) ∈ V)
53 asinf 26915 . . . . . . . 8 arcsin:ℂ⟶ℂ
5453a1i 11 . . . . . . 7 (⊤ → arcsin:ℂ⟶ℂ)
5554, 21feqresmpt 6978 . . . . . 6 (⊤ → (arcsin ↾ 𝐷) = (𝑥𝐷 ↦ (arcsin‘𝑥)))
5655oveq2d 7447 . . . . 5 (⊤ → (ℂ D (arcsin ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ (arcsin‘𝑥))))
573dvasin 37711 . . . . 5 (ℂ D (arcsin ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / (√‘(1 − (𝑥↑2)))))
5856, 57eqtr3di 2792 . . . 4 (⊤ → (ℂ D (𝑥𝐷 ↦ (arcsin‘𝑥))) = (𝑥𝐷 ↦ (1 / (√‘(1 − (𝑥↑2))))))
5911, 14, 16, 47, 51, 52, 58dvmptsub 26005 . . 3 (⊤ → (ℂ D (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))) = (𝑥𝐷 ↦ (0 − (1 / (√‘(1 − (𝑥↑2)))))))
6059mptru 1547 . 2 (ℂ D (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))) = (𝑥𝐷 ↦ (0 − (1 / (√‘(1 − (𝑥↑2))))))
61 df-neg 11495 . . . 4 -(1 / (√‘(1 − (𝑥↑2)))) = (0 − (1 / (√‘(1 − (𝑥↑2)))))
62 1cnd 11256 . . . . 5 (𝑥𝐷 → 1 ∈ ℂ)
63 ax-1cn 11213 . . . . . . 7 1 ∈ ℂ
6448sqcld 14184 . . . . . . 7 (𝑥𝐷 → (𝑥↑2) ∈ ℂ)
65 subcl 11507 . . . . . . 7 ((1 ∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 − (𝑥↑2)) ∈ ℂ)
6663, 64, 65sylancr 587 . . . . . 6 (𝑥𝐷 → (1 − (𝑥↑2)) ∈ ℂ)
6766sqrtcld 15476 . . . . 5 (𝑥𝐷 → (√‘(1 − (𝑥↑2))) ∈ ℂ)
68 eldifn 4132 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → ¬ 𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)))
6968, 3eleq2s 2859 . . . . . . 7 (𝑥𝐷 → ¬ 𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)))
70 mnfxr 11318 . . . . . . . . . . . 12 -∞ ∈ ℝ*
7126rexri 11319 . . . . . . . . . . . 12 -1 ∈ ℝ*
72 mnflt 13165 . . . . . . . . . . . . 13 (-1 ∈ ℝ → -∞ < -1)
7326, 72ax-mp 5 . . . . . . . . . . . 12 -∞ < -1
74 ubioc1 13440 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ -∞ < -1) → -1 ∈ (-∞(,]-1))
7570, 71, 73, 74mp3an 1463 . . . . . . . . . . 11 -1 ∈ (-∞(,]-1)
76 eleq1 2829 . . . . . . . . . . 11 (𝑥 = -1 → (𝑥 ∈ (-∞(,]-1) ↔ -1 ∈ (-∞(,]-1)))
7775, 76mpbiri 258 . . . . . . . . . 10 (𝑥 = -1 → 𝑥 ∈ (-∞(,]-1))
7834rexri 11319 . . . . . . . . . . . 12 1 ∈ ℝ*
79 pnfxr 11315 . . . . . . . . . . . 12 +∞ ∈ ℝ*
80 ltpnf 13162 . . . . . . . . . . . . 13 (1 ∈ ℝ → 1 < +∞)
8134, 80ax-mp 5 . . . . . . . . . . . 12 1 < +∞
82 lbico1 13441 . . . . . . . . . . . 12 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1 < +∞) → 1 ∈ (1[,)+∞))
8378, 79, 81, 82mp3an 1463 . . . . . . . . . . 11 1 ∈ (1[,)+∞)
84 eleq1 2829 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 ∈ (1[,)+∞) ↔ 1 ∈ (1[,)+∞)))
8583, 84mpbiri 258 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 ∈ (1[,)+∞))
8677, 85orim12i 909 . . . . . . . . 9 ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞)))
8786orcoms 873 . . . . . . . 8 ((𝑥 = 1 ∨ 𝑥 = -1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞)))
88 elun 4153 . . . . . . . 8 (𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)) ↔ (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞)))
8987, 88sylibr 234 . . . . . . 7 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)))
9069, 89nsyl 140 . . . . . 6 (𝑥𝐷 → ¬ (𝑥 = 1 ∨ 𝑥 = -1))
91 sq1 14234 . . . . . . . . . 10 (1↑2) = 1
92 1cnd 11256 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → 1 ∈ ℂ)
93 sqcl 14158 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
9493adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) ∈ ℂ)
9563, 93, 65sylancr 587 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (1 − (𝑥↑2)) ∈ ℂ)
9695adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) ∈ ℂ)
97 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (√‘(1 − (𝑥↑2))) = 0)
9896, 97sqr00d 15480 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) = 0)
9992, 94, 98subeq0d 11628 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → 1 = (𝑥↑2))
10091, 99eqtr2id 2790 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) = (1↑2))
101100ex 412 . . . . . . . 8 (𝑥 ∈ ℂ → ((√‘(1 − (𝑥↑2))) = 0 → (𝑥↑2) = (1↑2)))
102 sqeqor 14255 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥↑2) = (1↑2) ↔ (𝑥 = 1 ∨ 𝑥 = -1)))
10363, 102mpan2 691 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) = (1↑2) ↔ (𝑥 = 1 ∨ 𝑥 = -1)))
104101, 103sylibd 239 . . . . . . 7 (𝑥 ∈ ℂ → ((√‘(1 − (𝑥↑2))) = 0 → (𝑥 = 1 ∨ 𝑥 = -1)))
105104necon3bd 2954 . . . . . 6 (𝑥 ∈ ℂ → (¬ (𝑥 = 1 ∨ 𝑥 = -1) → (√‘(1 − (𝑥↑2))) ≠ 0))
10648, 90, 105sylc 65 . . . . 5 (𝑥𝐷 → (√‘(1 − (𝑥↑2))) ≠ 0)
10762, 67, 106divnegd 12056 . . . 4 (𝑥𝐷 → -(1 / (√‘(1 − (𝑥↑2)))) = (-1 / (√‘(1 − (𝑥↑2)))))
10861, 107eqtr3id 2791 . . 3 (𝑥𝐷 → (0 − (1 / (√‘(1 − (𝑥↑2))))) = (-1 / (√‘(1 − (𝑥↑2)))))
109108mpteq2ia 5245 . 2 (𝑥𝐷 ↦ (0 − (1 / (√‘(1 − (𝑥↑2)))))) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
1109, 60, 1093eqtri 2769 1 (ℂ D (arccos ↾ 𝐷)) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 848   = wceq 1540  wtru 1541  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  cun 3949  wss 3951  {cpr 4628   class class class wbr 5143  cmpt 5225  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  (,)cioo 13387  (,]cioc 13388  [,)cico 13389  cexp 14102  csqrt 15272  πcpi 16102  t crest 17465  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  Clsdccld 23024   D cdv 25898  arcsincasin 26905  arccoscacos 26906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-asin 26908  df-acos 26909
This theorem is referenced by:  dvreacos  37714
  Copyright terms: Public domain W3C validator