Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvacos Structured version   Visualization version   GIF version

Theorem dvacos 37744
Description: Derivative of arccosine. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
Assertion
Ref Expression
dvacos (ℂ D (arccos ↾ 𝐷)) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
Distinct variable group:   𝑥,𝐷

Proof of Theorem dvacos
StepHypRef Expression
1 df-acos 26803 . . . . 5 arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥)))
21reseq1i 5923 . . . 4 (arccos ↾ 𝐷) = ((𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) ↾ 𝐷)
3 dvasin.d . . . . . 6 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
4 difss 4083 . . . . . 6 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ
53, 4eqsstri 3976 . . . . 5 𝐷 ⊆ ℂ
6 resmpt 5985 . . . . 5 (𝐷 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) ↾ 𝐷) = (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥))))
75, 6ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) ↾ 𝐷) = (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))
82, 7eqtri 2754 . . 3 (arccos ↾ 𝐷) = (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))
98oveq2i 7357 . 2 (ℂ D (arccos ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥))))
10 cnelprrecn 11099 . . . . 5 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
12 halfpire 26400 . . . . . 6 (π / 2) ∈ ℝ
1312recni 11126 . . . . 5 (π / 2) ∈ ℂ
1413a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → (π / 2) ∈ ℂ)
15 c0ex 11106 . . . . 5 0 ∈ V
1615a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → 0 ∈ V)
1713a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (π / 2) ∈ ℂ)
1815a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → 0 ∈ V)
1913a1i 11 . . . . . 6 (⊤ → (π / 2) ∈ ℂ)
2011, 19dvmptc 25889 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (π / 2))) = (𝑥 ∈ ℂ ↦ 0))
215a1i 11 . . . . 5 (⊤ → 𝐷 ⊆ ℂ)
22 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2322cnfldtopon 24697 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2423toponrestid 22836 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
2522recld2 24730 . . . . . . . . . 10 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
26 neg1rr 12111 . . . . . . . . . . . 12 -1 ∈ ℝ
27 iocmnfcld 24683 . . . . . . . . . . . 12 (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))))
2826, 27ax-mp 5 . . . . . . . . . . 11 (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))
29 tgioo4 24720 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3029fveq2i 6825 . . . . . . . . . . 11 (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
3128, 30eleqtri 2829 . . . . . . . . . 10 (-∞(,]-1) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
32 restcldr 23089 . . . . . . . . . 10 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (-∞(,]-1) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → (-∞(,]-1) ∈ (Clsd‘(TopOpen‘ℂfld)))
3325, 31, 32mp2an 692 . . . . . . . . 9 (-∞(,]-1) ∈ (Clsd‘(TopOpen‘ℂfld))
34 1re 11112 . . . . . . . . . . . 12 1 ∈ ℝ
35 icopnfcld 24682 . . . . . . . . . . . 12 (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
3634, 35ax-mp 5 . . . . . . . . . . 11 (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))
3736, 30eleqtri 2829 . . . . . . . . . 10 (1[,)+∞) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
38 restcldr 23089 . . . . . . . . . 10 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (1[,)+∞) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → (1[,)+∞) ∈ (Clsd‘(TopOpen‘ℂfld)))
3925, 37, 38mp2an 692 . . . . . . . . 9 (1[,)+∞) ∈ (Clsd‘(TopOpen‘ℂfld))
40 uncld 22956 . . . . . . . . 9 (((-∞(,]-1) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (1[,)+∞) ∈ (Clsd‘(TopOpen‘ℂfld))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)))
4133, 39, 40mp2an 692 . . . . . . . 8 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))
4223toponunii 22831 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
4342cldopn 22946 . . . . . . . 8 (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
4441, 43ax-mp 5 . . . . . . 7 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)
453, 44eqeltri 2827 . . . . . 6 𝐷 ∈ (TopOpen‘ℂfld)
4645a1i 11 . . . . 5 (⊤ → 𝐷 ∈ (TopOpen‘ℂfld))
4711, 17, 18, 20, 21, 24, 22, 46dvmptres 25894 . . . 4 (⊤ → (ℂ D (𝑥𝐷 ↦ (π / 2))) = (𝑥𝐷 ↦ 0))
485sseli 3925 . . . . . 6 (𝑥𝐷𝑥 ∈ ℂ)
49 asincl 26810 . . . . . 6 (𝑥 ∈ ℂ → (arcsin‘𝑥) ∈ ℂ)
5048, 49syl 17 . . . . 5 (𝑥𝐷 → (arcsin‘𝑥) ∈ ℂ)
5150adantl 481 . . . 4 ((⊤ ∧ 𝑥𝐷) → (arcsin‘𝑥) ∈ ℂ)
52 ovexd 7381 . . . 4 ((⊤ ∧ 𝑥𝐷) → (1 / (√‘(1 − (𝑥↑2)))) ∈ V)
53 asinf 26809 . . . . . . . 8 arcsin:ℂ⟶ℂ
5453a1i 11 . . . . . . 7 (⊤ → arcsin:ℂ⟶ℂ)
5554, 21feqresmpt 6891 . . . . . 6 (⊤ → (arcsin ↾ 𝐷) = (𝑥𝐷 ↦ (arcsin‘𝑥)))
5655oveq2d 7362 . . . . 5 (⊤ → (ℂ D (arcsin ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ (arcsin‘𝑥))))
573dvasin 37743 . . . . 5 (ℂ D (arcsin ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / (√‘(1 − (𝑥↑2)))))
5856, 57eqtr3di 2781 . . . 4 (⊤ → (ℂ D (𝑥𝐷 ↦ (arcsin‘𝑥))) = (𝑥𝐷 ↦ (1 / (√‘(1 − (𝑥↑2))))))
5911, 14, 16, 47, 51, 52, 58dvmptsub 25898 . . 3 (⊤ → (ℂ D (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))) = (𝑥𝐷 ↦ (0 − (1 / (√‘(1 − (𝑥↑2)))))))
6059mptru 1548 . 2 (ℂ D (𝑥𝐷 ↦ ((π / 2) − (arcsin‘𝑥)))) = (𝑥𝐷 ↦ (0 − (1 / (√‘(1 − (𝑥↑2))))))
61 df-neg 11347 . . . 4 -(1 / (√‘(1 − (𝑥↑2)))) = (0 − (1 / (√‘(1 − (𝑥↑2)))))
62 1cnd 11107 . . . . 5 (𝑥𝐷 → 1 ∈ ℂ)
63 ax-1cn 11064 . . . . . . 7 1 ∈ ℂ
6448sqcld 14051 . . . . . . 7 (𝑥𝐷 → (𝑥↑2) ∈ ℂ)
65 subcl 11359 . . . . . . 7 ((1 ∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 − (𝑥↑2)) ∈ ℂ)
6663, 64, 65sylancr 587 . . . . . 6 (𝑥𝐷 → (1 − (𝑥↑2)) ∈ ℂ)
6766sqrtcld 15347 . . . . 5 (𝑥𝐷 → (√‘(1 − (𝑥↑2))) ∈ ℂ)
68 eldifn 4079 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → ¬ 𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)))
6968, 3eleq2s 2849 . . . . . . 7 (𝑥𝐷 → ¬ 𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)))
70 mnfxr 11169 . . . . . . . . . . . 12 -∞ ∈ ℝ*
7126rexri 11170 . . . . . . . . . . . 12 -1 ∈ ℝ*
72 mnflt 13022 . . . . . . . . . . . . 13 (-1 ∈ ℝ → -∞ < -1)
7326, 72ax-mp 5 . . . . . . . . . . . 12 -∞ < -1
74 ubioc1 13299 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ -1 ∈ ℝ* ∧ -∞ < -1) → -1 ∈ (-∞(,]-1))
7570, 71, 73, 74mp3an 1463 . . . . . . . . . . 11 -1 ∈ (-∞(,]-1)
76 eleq1 2819 . . . . . . . . . . 11 (𝑥 = -1 → (𝑥 ∈ (-∞(,]-1) ↔ -1 ∈ (-∞(,]-1)))
7775, 76mpbiri 258 . . . . . . . . . 10 (𝑥 = -1 → 𝑥 ∈ (-∞(,]-1))
7834rexri 11170 . . . . . . . . . . . 12 1 ∈ ℝ*
79 pnfxr 11166 . . . . . . . . . . . 12 +∞ ∈ ℝ*
80 ltpnf 13019 . . . . . . . . . . . . 13 (1 ∈ ℝ → 1 < +∞)
8134, 80ax-mp 5 . . . . . . . . . . . 12 1 < +∞
82 lbico1 13300 . . . . . . . . . . . 12 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1 < +∞) → 1 ∈ (1[,)+∞))
8378, 79, 81, 82mp3an 1463 . . . . . . . . . . 11 1 ∈ (1[,)+∞)
84 eleq1 2819 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 ∈ (1[,)+∞) ↔ 1 ∈ (1[,)+∞)))
8583, 84mpbiri 258 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 ∈ (1[,)+∞))
8677, 85orim12i 908 . . . . . . . . 9 ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞)))
8786orcoms 872 . . . . . . . 8 ((𝑥 = 1 ∨ 𝑥 = -1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞)))
88 elun 4100 . . . . . . . 8 (𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)) ↔ (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞)))
8987, 88sylibr 234 . . . . . . 7 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ((-∞(,]-1) ∪ (1[,)+∞)))
9069, 89nsyl 140 . . . . . 6 (𝑥𝐷 → ¬ (𝑥 = 1 ∨ 𝑥 = -1))
91 sq1 14102 . . . . . . . . . 10 (1↑2) = 1
92 1cnd 11107 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → 1 ∈ ℂ)
93 sqcl 14025 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
9493adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) ∈ ℂ)
9563, 93, 65sylancr 587 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (1 − (𝑥↑2)) ∈ ℂ)
9695adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) ∈ ℂ)
97 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (√‘(1 − (𝑥↑2))) = 0)
9896, 97sqr00d 15351 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) = 0)
9992, 94, 98subeq0d 11480 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → 1 = (𝑥↑2))
10091, 99eqtr2id 2779 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) = (1↑2))
101100ex 412 . . . . . . . 8 (𝑥 ∈ ℂ → ((√‘(1 − (𝑥↑2))) = 0 → (𝑥↑2) = (1↑2)))
102 sqeqor 14123 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥↑2) = (1↑2) ↔ (𝑥 = 1 ∨ 𝑥 = -1)))
10363, 102mpan2 691 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) = (1↑2) ↔ (𝑥 = 1 ∨ 𝑥 = -1)))
104101, 103sylibd 239 . . . . . . 7 (𝑥 ∈ ℂ → ((√‘(1 − (𝑥↑2))) = 0 → (𝑥 = 1 ∨ 𝑥 = -1)))
105104necon3bd 2942 . . . . . 6 (𝑥 ∈ ℂ → (¬ (𝑥 = 1 ∨ 𝑥 = -1) → (√‘(1 − (𝑥↑2))) ≠ 0))
10648, 90, 105sylc 65 . . . . 5 (𝑥𝐷 → (√‘(1 − (𝑥↑2))) ≠ 0)
10762, 67, 106divnegd 11910 . . . 4 (𝑥𝐷 → -(1 / (√‘(1 − (𝑥↑2)))) = (-1 / (√‘(1 − (𝑥↑2)))))
10861, 107eqtr3id 2780 . . 3 (𝑥𝐷 → (0 − (1 / (√‘(1 − (𝑥↑2))))) = (-1 / (√‘(1 − (𝑥↑2)))))
109108mpteq2ia 5184 . 2 (𝑥𝐷 ↦ (0 − (1 / (√‘(1 − (𝑥↑2)))))) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
1109, 60, 1093eqtri 2758 1 (ℂ D (arccos ↾ 𝐷)) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  wtru 1542  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  cun 3895  wss 3897  {cpr 4575   class class class wbr 5089  cmpt 5170  ran crn 5615  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cmin 11344  -cneg 11345   / cdiv 11774  2c2 12180  (,)cioo 13245  (,]cioc 13246  [,)cico 13247  cexp 13968  csqrt 15140  πcpi 15973  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21291  Clsdccld 22931   D cdv 25791  arcsincasin 26799  arccoscacos 26800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493  df-asin 26802  df-acos 26803
This theorem is referenced by:  dvreacos  37746
  Copyright terms: Public domain W3C validator