| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-ae | Structured version Visualization version GIF version | ||
| Description: Define 'almost everywhere' with regard to a measure 𝑀. A property holds almost everywhere if the measure of the set where it does not hold has measure zero. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
| Ref | Expression |
|---|---|
| df-ae | ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cae 34197 | . 2 class a.e. | |
| 2 | vm | . . . . . . . . 9 setvar 𝑚 | |
| 3 | 2 | cv 1538 | . . . . . . . 8 class 𝑚 |
| 4 | 3 | cdm 5665 | . . . . . . 7 class dom 𝑚 |
| 5 | 4 | cuni 4887 | . . . . . 6 class ∪ dom 𝑚 |
| 6 | va | . . . . . . 7 setvar 𝑎 | |
| 7 | 6 | cv 1538 | . . . . . 6 class 𝑎 |
| 8 | 5, 7 | cdif 3928 | . . . . 5 class (∪ dom 𝑚 ∖ 𝑎) |
| 9 | 8, 3 | cfv 6541 | . . . 4 class (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) |
| 10 | cc0 11137 | . . . 4 class 0 | |
| 11 | 9, 10 | wceq 1539 | . . 3 wff (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0 |
| 12 | 11, 6, 2 | copab 5185 | . 2 class {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} |
| 13 | 1, 12 | wceq 1539 | 1 wff a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} |
| Colors of variables: wff setvar class |
| This definition is referenced by: relae 34200 brae 34201 braew 34202 |
| Copyright terms: Public domain | W3C validator |