Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relae Structured version   Visualization version   GIF version

Theorem relae 34217
Description: 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
relae Rel a.e.

Proof of Theorem relae
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ae 34216 . 2 a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
21relopabiv 5799 1 Rel a.e.
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3923   cuni 4883  dom cdm 5654  Rel wrel 5659  cfv 6530  0cc0 11127  a.e.cae 34214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-ss 3943  df-opab 5182  df-xp 5660  df-rel 5661  df-ae 34216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator