Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relae Structured version   Visualization version   GIF version

Theorem relae 34196
Description: 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
relae Rel a.e.

Proof of Theorem relae
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ae 34195 . 2 a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
21relopabiv 5839 1 Rel a.e.
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973   cuni 4931  dom cdm 5695  Rel wrel 5700  cfv 6568  0cc0 11178  a.e.cae 34193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-opab 5229  df-xp 5701  df-rel 5702  df-ae 34195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator