Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relae Structured version   Visualization version   GIF version

Theorem relae 33233
Description: 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
relae Rel a.e.

Proof of Theorem relae
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ae 33232 . 2 a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
21relopabiv 5820 1 Rel a.e.
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3945   cuni 4908  dom cdm 5676  Rel wrel 5681  cfv 6543  0cc0 11109  a.e.cae 33230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-opab 5211  df-xp 5682  df-rel 5683  df-ae 33232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator