| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relae | Structured version Visualization version GIF version | ||
| Description: 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
| Ref | Expression |
|---|---|
| relae | ⊢ Rel a.e. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ae 34222 | . 2 ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel a.e. |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3908 ∪ cuni 4867 dom cdm 5631 Rel wrel 5636 ‘cfv 6499 0cc0 11044 a.e.cae 34220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-ae 34222 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |