![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relae | Structured version Visualization version GIF version |
Description: 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
relae | ⊢ Rel a.e. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ae 30848 | . 2 ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | |
2 | 1 | relopabi 5479 | 1 ⊢ Rel a.e. |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∖ cdif 3796 ∪ cuni 4659 dom cdm 5343 Rel wrel 5348 ‘cfv 6124 0cc0 10253 a.e.cae 30846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-opab 4937 df-xp 5349 df-rel 5350 df-ae 30848 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |