![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relae | Structured version Visualization version GIF version |
Description: 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
relae | ⊢ Rel a.e. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ae 34181 | . 2 ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | |
2 | 1 | relopabiv 5827 | 1 ⊢ Rel a.e. |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1535 ∖ cdif 3960 ∪ cuni 4914 dom cdm 5683 Rel wrel 5688 ‘cfv 6558 0cc0 11146 a.e.cae 34179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1538 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-v 3479 df-ss 3980 df-opab 5212 df-xp 5689 df-rel 5690 df-ae 34181 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |