Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relae | Structured version Visualization version GIF version |
Description: 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
relae | ⊢ Rel a.e. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ae 32107 | . 2 ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel a.e. |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∪ cuni 4836 dom cdm 5580 Rel wrel 5585 ‘cfv 6418 0cc0 10802 a.e.cae 32105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-ae 32107 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |