Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  braew Structured version   Visualization version   GIF version

Theorem braew 34253
Description: 'almost everywhere' relation for a measure 𝑀 and a property 𝜑 (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypothesis
Ref Expression
braew.1 dom 𝑀 = 𝑂
Assertion
Ref Expression
braew (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0))
Distinct variable group:   𝑥,𝑂
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥)

Proof of Theorem braew
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 braew.1 . . . . 5 dom 𝑀 = 𝑂
2 dmexg 7831 . . . . . 6 (𝑀 ran measures → dom 𝑀 ∈ V)
32uniexd 7675 . . . . 5 (𝑀 ran measures → dom 𝑀 ∈ V)
41, 3eqeltrrid 2836 . . . 4 (𝑀 ran measures → 𝑂 ∈ V)
5 rabexg 5275 . . . 4 (𝑂 ∈ V → {𝑥𝑂𝜑} ∈ V)
64, 5syl 17 . . 3 (𝑀 ran measures → {𝑥𝑂𝜑} ∈ V)
7 simpr 484 . . . . . 6 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀)
87dmeqd 5845 . . . . . . . 8 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
98unieqd 4872 . . . . . . 7 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
10 simpl 482 . . . . . . 7 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → 𝑎 = {𝑥𝑂𝜑})
119, 10difeq12d 4077 . . . . . 6 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → ( dom 𝑚𝑎) = ( dom 𝑀 ∖ {𝑥𝑂𝜑}))
127, 11fveq12d 6829 . . . . 5 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → (𝑚‘( dom 𝑚𝑎)) = (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})))
1312eqeq1d 2733 . . . 4 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → ((𝑚‘( dom 𝑚𝑎)) = 0 ↔ (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = 0))
14 df-ae 34250 . . . 4 a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
1513, 14brabga 5474 . . 3 (({𝑥𝑂𝜑} ∈ V ∧ 𝑀 ran measures) → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = 0))
166, 15mpancom 688 . 2 (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = 0))
171difeq1i 4072 . . . . 5 ( dom 𝑀 ∖ {𝑥𝑂𝜑}) = (𝑂 ∖ {𝑥𝑂𝜑})
18 notrab 4272 . . . . 5 (𝑂 ∖ {𝑥𝑂𝜑}) = {𝑥𝑂 ∣ ¬ 𝜑}
1917, 18eqtri 2754 . . . 4 ( dom 𝑀 ∖ {𝑥𝑂𝜑}) = {𝑥𝑂 ∣ ¬ 𝜑}
2019fveq2i 6825 . . 3 (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑})
2120eqeq1i 2736 . 2 ((𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = 0 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
2216, 21bitrdi 287 1 (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cdif 3899   cuni 4859   class class class wbr 5091  dom cdm 5616  ran crn 5617  cfv 6481  0cc0 11006  measurescmeas 34206  a.e.cae 34248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-cnv 5624  df-dm 5626  df-rn 5627  df-iota 6437  df-fv 6489  df-ae 34250
This theorem is referenced by:  truae  34254  aean  34255
  Copyright terms: Public domain W3C validator