| Step | Hyp | Ref
| Expression |
| 1 | | braew.1 |
. . . . 5
⊢ ∪ dom 𝑀 = 𝑂 |
| 2 | | dmexg 7905 |
. . . . . 6
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ V) |
| 3 | 2 | uniexd 7744 |
. . . . 5
⊢ (𝑀 ∈ ∪ ran measures → ∪ dom
𝑀 ∈
V) |
| 4 | 1, 3 | eqeltrrid 2838 |
. . . 4
⊢ (𝑀 ∈ ∪ ran measures → 𝑂 ∈ V) |
| 5 | | rabexg 5317 |
. . . 4
⊢ (𝑂 ∈ V → {𝑥 ∈ 𝑂 ∣ 𝜑} ∈ V) |
| 6 | 4, 5 | syl 17 |
. . 3
⊢ (𝑀 ∈ ∪ ran measures → {𝑥 ∈ 𝑂 ∣ 𝜑} ∈ V) |
| 7 | | simpr 484 |
. . . . . 6
⊢ ((𝑎 = {𝑥 ∈ 𝑂 ∣ 𝜑} ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) |
| 8 | 7 | dmeqd 5896 |
. . . . . . . 8
⊢ ((𝑎 = {𝑥 ∈ 𝑂 ∣ 𝜑} ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀) |
| 9 | 8 | unieqd 4900 |
. . . . . . 7
⊢ ((𝑎 = {𝑥 ∈ 𝑂 ∣ 𝜑} ∧ 𝑚 = 𝑀) → ∪ dom
𝑚 = ∪ dom 𝑀) |
| 10 | | simpl 482 |
. . . . . . 7
⊢ ((𝑎 = {𝑥 ∈ 𝑂 ∣ 𝜑} ∧ 𝑚 = 𝑀) → 𝑎 = {𝑥 ∈ 𝑂 ∣ 𝜑}) |
| 11 | 9, 10 | difeq12d 4107 |
. . . . . 6
⊢ ((𝑎 = {𝑥 ∈ 𝑂 ∣ 𝜑} ∧ 𝑚 = 𝑀) → (∪ dom
𝑚 ∖ 𝑎) = (∪ dom 𝑀 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑})) |
| 12 | 7, 11 | fveq12d 6893 |
. . . . 5
⊢ ((𝑎 = {𝑥 ∈ 𝑂 ∣ 𝜑} ∧ 𝑚 = 𝑀) → (𝑚‘(∪ dom
𝑚 ∖ 𝑎)) = (𝑀‘(∪ dom
𝑀 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑}))) |
| 13 | 12 | eqeq1d 2736 |
. . . 4
⊢ ((𝑎 = {𝑥 ∈ 𝑂 ∣ 𝜑} ∧ 𝑚 = 𝑀) → ((𝑚‘(∪ dom
𝑚 ∖ 𝑎)) = 0 ↔ (𝑀‘(∪ dom
𝑀 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑})) = 0)) |
| 14 | | df-ae 34215 |
. . . 4
⊢ a.e. =
{〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} |
| 15 | 13, 14 | brabga 5519 |
. . 3
⊢ (({𝑥 ∈ 𝑂 ∣ 𝜑} ∈ V ∧ 𝑀 ∈ ∪ ran
measures) → ({𝑥 ∈
𝑂 ∣ 𝜑}a.e.𝑀 ↔ (𝑀‘(∪ dom
𝑀 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑})) = 0)) |
| 16 | 6, 15 | mpancom 688 |
. 2
⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ↔ (𝑀‘(∪ dom
𝑀 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑})) = 0)) |
| 17 | 1 | difeq1i 4102 |
. . . . 5
⊢ (∪ dom 𝑀 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑}) = (𝑂 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑}) |
| 18 | | notrab 4302 |
. . . . 5
⊢ (𝑂 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑}) = {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} |
| 19 | 17, 18 | eqtri 2757 |
. . . 4
⊢ (∪ dom 𝑀 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑}) = {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} |
| 20 | 19 | fveq2i 6889 |
. . 3
⊢ (𝑀‘(∪ dom 𝑀 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑})) = (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) |
| 21 | 20 | eqeq1i 2739 |
. 2
⊢ ((𝑀‘(∪ dom 𝑀 ∖ {𝑥 ∈ 𝑂 ∣ 𝜑})) = 0 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0) |
| 22 | 16, 21 | bitrdi 287 |
1
⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0)) |