Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  braew Structured version   Visualization version   GIF version

Theorem braew 34232
Description: 'almost everywhere' relation for a measure 𝑀 and a property 𝜑 (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypothesis
Ref Expression
braew.1 dom 𝑀 = 𝑂
Assertion
Ref Expression
braew (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0))
Distinct variable group:   𝑥,𝑂
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥)

Proof of Theorem braew
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 braew.1 . . . . 5 dom 𝑀 = 𝑂
2 dmexg 7877 . . . . . 6 (𝑀 ran measures → dom 𝑀 ∈ V)
32uniexd 7718 . . . . 5 (𝑀 ran measures → dom 𝑀 ∈ V)
41, 3eqeltrrid 2833 . . . 4 (𝑀 ran measures → 𝑂 ∈ V)
5 rabexg 5292 . . . 4 (𝑂 ∈ V → {𝑥𝑂𝜑} ∈ V)
64, 5syl 17 . . 3 (𝑀 ran measures → {𝑥𝑂𝜑} ∈ V)
7 simpr 484 . . . . . 6 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀)
87dmeqd 5869 . . . . . . . 8 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
98unieqd 4884 . . . . . . 7 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
10 simpl 482 . . . . . . 7 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → 𝑎 = {𝑥𝑂𝜑})
119, 10difeq12d 4090 . . . . . 6 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → ( dom 𝑚𝑎) = ( dom 𝑀 ∖ {𝑥𝑂𝜑}))
127, 11fveq12d 6865 . . . . 5 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → (𝑚‘( dom 𝑚𝑎)) = (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})))
1312eqeq1d 2731 . . . 4 ((𝑎 = {𝑥𝑂𝜑} ∧ 𝑚 = 𝑀) → ((𝑚‘( dom 𝑚𝑎)) = 0 ↔ (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = 0))
14 df-ae 34229 . . . 4 a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
1513, 14brabga 5494 . . 3 (({𝑥𝑂𝜑} ∈ V ∧ 𝑀 ran measures) → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = 0))
166, 15mpancom 688 . 2 (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = 0))
171difeq1i 4085 . . . . 5 ( dom 𝑀 ∖ {𝑥𝑂𝜑}) = (𝑂 ∖ {𝑥𝑂𝜑})
18 notrab 4285 . . . . 5 (𝑂 ∖ {𝑥𝑂𝜑}) = {𝑥𝑂 ∣ ¬ 𝜑}
1917, 18eqtri 2752 . . . 4 ( dom 𝑀 ∖ {𝑥𝑂𝜑}) = {𝑥𝑂 ∣ ¬ 𝜑}
2019fveq2i 6861 . . 3 (𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑})
2120eqeq1i 2734 . 2 ((𝑀‘( dom 𝑀 ∖ {𝑥𝑂𝜑})) = 0 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
2216, 21bitrdi 287 1 (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911   cuni 4871   class class class wbr 5107  dom cdm 5638  ran crn 5639  cfv 6511  0cc0 11068  measurescmeas 34185  a.e.cae 34227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-cnv 5646  df-dm 5648  df-rn 5649  df-iota 6464  df-fv 6519  df-ae 34229
This theorem is referenced by:  truae  34233  aean  34234
  Copyright terms: Public domain W3C validator