Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brae Structured version   Visualization version   GIF version

Theorem brae 32197
Description: 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
brae ((𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))

Proof of Theorem brae
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑀) → 𝑚 = 𝑀)
21dmeqd 5812 . . . . . . 7 ((𝑎 = 𝐴𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
32unieqd 4859 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
4 simpl 483 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑀) → 𝑎 = 𝐴)
53, 4difeq12d 4063 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑀) → ( dom 𝑚𝑎) = ( dom 𝑀𝐴))
61, 5fveq12d 6776 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑀) → (𝑚‘( dom 𝑚𝑎)) = (𝑀‘( dom 𝑀𝐴)))
76eqeq1d 2742 . . 3 ((𝑎 = 𝐴𝑚 = 𝑀) → ((𝑚‘( dom 𝑚𝑎)) = 0 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
8 df-ae 32195 . . 3 a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
97, 8brabga 5449 . 2 ((𝐴 ∈ dom 𝑀𝑀 ran measures) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
109ancoms 459 1 ((𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  cdif 3889   cuni 4845   class class class wbr 5079  dom cdm 5589  ran crn 5590  cfv 6431  0cc0 10864  measurescmeas 32151  a.e.cae 32193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-dm 5599  df-iota 6389  df-fv 6439  df-ae 32195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator