| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brae | Structured version Visualization version GIF version | ||
| Description: 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
| Ref | Expression |
|---|---|
| brae | ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
| 2 | 1 | dmeqd 5882 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀) |
| 3 | 2 | unieqd 4893 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ∪ dom 𝑚 = ∪ dom 𝑀) |
| 4 | simpl 482 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑎 = 𝐴) | |
| 5 | 3, 4 | difeq12d 4100 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (∪ dom 𝑚 ∖ 𝑎) = (∪ dom 𝑀 ∖ 𝐴)) |
| 6 | 1, 5 | fveq12d 6879 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = (𝑀‘(∪ dom 𝑀 ∖ 𝐴))) |
| 7 | 6 | eqeq1d 2736 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ((𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
| 8 | df-ae 34178 | . . 3 ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | |
| 9 | 7, 8 | brabga 5506 | . 2 ⊢ ((𝐴 ∈ dom 𝑀 ∧ 𝑀 ∈ ∪ ran measures) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
| 10 | 9 | ancoms 458 | 1 ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3921 ∪ cuni 4880 class class class wbr 5116 dom cdm 5651 ran crn 5652 ‘cfv 6527 0cc0 11121 measurescmeas 34134 a.e.cae 34176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-dm 5661 df-iota 6480 df-fv 6535 df-ae 34178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |