![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brae | Structured version Visualization version GIF version |
Description: 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
brae | ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
2 | 1 | dmeqd 5903 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀) |
3 | 2 | unieqd 4921 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ∪ dom 𝑚 = ∪ dom 𝑀) |
4 | simpl 483 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑎 = 𝐴) | |
5 | 3, 4 | difeq12d 4122 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (∪ dom 𝑚 ∖ 𝑎) = (∪ dom 𝑀 ∖ 𝐴)) |
6 | 1, 5 | fveq12d 6895 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = (𝑀‘(∪ dom 𝑀 ∖ 𝐴))) |
7 | 6 | eqeq1d 2734 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ((𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
8 | df-ae 33225 | . . 3 ⊢ a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | |
9 | 7, 8 | brabga 5533 | . 2 ⊢ ((𝐴 ∈ dom 𝑀 ∧ 𝑀 ∈ ∪ ran measures) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
10 | 9 | ancoms 459 | 1 ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3944 ∪ cuni 4907 class class class wbr 5147 dom cdm 5675 ran crn 5676 ‘cfv 6540 0cc0 11106 measurescmeas 33181 a.e.cae 33223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-dm 5685 df-iota 6492 df-fv 6548 df-ae 33225 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |