Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brae Structured version   Visualization version   GIF version

Theorem brae 33239
Description: 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
brae ((𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))

Proof of Theorem brae
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑀) → 𝑚 = 𝑀)
21dmeqd 5906 . . . . . . 7 ((𝑎 = 𝐴𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
32unieqd 4923 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
4 simpl 484 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑀) → 𝑎 = 𝐴)
53, 4difeq12d 4124 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑀) → ( dom 𝑚𝑎) = ( dom 𝑀𝐴))
61, 5fveq12d 6899 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑀) → (𝑚‘( dom 𝑚𝑎)) = (𝑀‘( dom 𝑀𝐴)))
76eqeq1d 2735 . . 3 ((𝑎 = 𝐴𝑚 = 𝑀) → ((𝑚‘( dom 𝑚𝑎)) = 0 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
8 df-ae 33237 . . 3 a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
97, 8brabga 5535 . 2 ((𝐴 ∈ dom 𝑀𝑀 ran measures) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
109ancoms 460 1 ((𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cdif 3946   cuni 4909   class class class wbr 5149  dom cdm 5677  ran crn 5678  cfv 6544  0cc0 11110  measurescmeas 33193  a.e.cae 33235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-dm 5687  df-iota 6496  df-fv 6552  df-ae 33237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator