Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brae | Structured version Visualization version GIF version |
Description: 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
brae | ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
2 | 1 | dmeqd 5827 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀) |
3 | 2 | unieqd 4858 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ∪ dom 𝑚 = ∪ dom 𝑀) |
4 | simpl 484 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑎 = 𝐴) | |
5 | 3, 4 | difeq12d 4064 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (∪ dom 𝑚 ∖ 𝑎) = (∪ dom 𝑀 ∖ 𝐴)) |
6 | 1, 5 | fveq12d 6811 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = (𝑀‘(∪ dom 𝑀 ∖ 𝐴))) |
7 | 6 | eqeq1d 2738 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ((𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
8 | df-ae 32256 | . . 3 ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | |
9 | 7, 8 | brabga 5460 | . 2 ⊢ ((𝐴 ∈ dom 𝑀 ∧ 𝑀 ∈ ∪ ran measures) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
10 | 9 | ancoms 460 | 1 ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∖ cdif 3889 ∪ cuni 4844 class class class wbr 5081 dom cdm 5600 ran crn 5601 ‘cfv 6458 0cc0 10921 measurescmeas 32212 a.e.cae 32254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-dm 5610 df-iota 6410 df-fv 6466 df-ae 32256 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |