Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brae Structured version   Visualization version   GIF version

Theorem brae 34180
Description: 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
brae ((𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))

Proof of Theorem brae
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑀) → 𝑚 = 𝑀)
21dmeqd 5882 . . . . . . 7 ((𝑎 = 𝐴𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
32unieqd 4893 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
4 simpl 482 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑀) → 𝑎 = 𝐴)
53, 4difeq12d 4100 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑀) → ( dom 𝑚𝑎) = ( dom 𝑀𝐴))
61, 5fveq12d 6879 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑀) → (𝑚‘( dom 𝑚𝑎)) = (𝑀‘( dom 𝑀𝐴)))
76eqeq1d 2736 . . 3 ((𝑎 = 𝐴𝑚 = 𝑀) → ((𝑚‘( dom 𝑚𝑎)) = 0 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
8 df-ae 34178 . . 3 a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
97, 8brabga 5506 . 2 ((𝐴 ∈ dom 𝑀𝑀 ran measures) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
109ancoms 458 1 ((𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cdif 3921   cuni 4880   class class class wbr 5116  dom cdm 5651  ran crn 5652  cfv 6527  0cc0 11121  measurescmeas 34134  a.e.cae 34176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-dm 5661  df-iota 6480  df-fv 6535  df-ae 34178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator