| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brae | Structured version Visualization version GIF version | ||
| Description: 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
| Ref | Expression |
|---|---|
| brae | ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
| 2 | 1 | dmeqd 5914 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀) |
| 3 | 2 | unieqd 4918 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ∪ dom 𝑚 = ∪ dom 𝑀) |
| 4 | simpl 482 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑎 = 𝐴) | |
| 5 | 3, 4 | difeq12d 4126 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (∪ dom 𝑚 ∖ 𝑎) = (∪ dom 𝑀 ∖ 𝐴)) |
| 6 | 1, 5 | fveq12d 6911 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = (𝑀‘(∪ dom 𝑀 ∖ 𝐴))) |
| 7 | 6 | eqeq1d 2738 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ((𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
| 8 | df-ae 34218 | . . 3 ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | |
| 9 | 7, 8 | brabga 5537 | . 2 ⊢ ((𝐴 ∈ dom 𝑀 ∧ 𝑀 ∈ ∪ ran measures) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
| 10 | 9 | ancoms 458 | 1 ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3947 ∪ cuni 4905 class class class wbr 5141 dom cdm 5683 ran crn 5684 ‘cfv 6559 0cc0 11151 measurescmeas 34174 a.e.cae 34216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-dm 5693 df-iota 6512 df-fv 6567 df-ae 34218 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |