Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brae | Structured version Visualization version GIF version |
Description: 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
brae | ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
2 | 1 | dmeqd 5811 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀) |
3 | 2 | unieqd 4858 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ∪ dom 𝑚 = ∪ dom 𝑀) |
4 | simpl 482 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → 𝑎 = 𝐴) | |
5 | 3, 4 | difeq12d 4062 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (∪ dom 𝑚 ∖ 𝑎) = (∪ dom 𝑀 ∖ 𝐴)) |
6 | 1, 5 | fveq12d 6775 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = (𝑀‘(∪ dom 𝑀 ∖ 𝐴))) |
7 | 6 | eqeq1d 2741 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑚 = 𝑀) → ((𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
8 | df-ae 32186 | . . 3 ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | |
9 | 7, 8 | brabga 5448 | . 2 ⊢ ((𝐴 ∈ dom 𝑀 ∧ 𝑀 ∈ ∪ ran measures) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
10 | 9 | ancoms 458 | 1 ⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 ∪ cuni 4844 class class class wbr 5078 dom cdm 5588 ran crn 5589 ‘cfv 6430 0cc0 10855 measurescmeas 32142 a.e.cae 32184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-dm 5598 df-iota 6388 df-fv 6438 df-ae 32186 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |