Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brae Structured version   Visualization version   GIF version

Theorem brae 34204
Description: 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
brae ((𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))

Proof of Theorem brae
Dummy variables 𝑚 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑀) → 𝑚 = 𝑀)
21dmeqd 5859 . . . . . . 7 ((𝑎 = 𝐴𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
32unieqd 4880 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
4 simpl 482 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑀) → 𝑎 = 𝐴)
53, 4difeq12d 4086 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑀) → ( dom 𝑚𝑎) = ( dom 𝑀𝐴))
61, 5fveq12d 6847 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑀) → (𝑚‘( dom 𝑚𝑎)) = (𝑀‘( dom 𝑀𝐴)))
76eqeq1d 2731 . . 3 ((𝑎 = 𝐴𝑚 = 𝑀) → ((𝑚‘( dom 𝑚𝑎)) = 0 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
8 df-ae 34202 . . 3 a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
97, 8brabga 5489 . 2 ((𝐴 ∈ dom 𝑀𝑀 ran measures) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
109ancoms 458 1 ((𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3908   cuni 4867   class class class wbr 5102  dom cdm 5631  ran crn 5632  cfv 6499  0cc0 11044  measurescmeas 34158  a.e.cae 34200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-dm 5641  df-iota 6452  df-fv 6507  df-ae 34202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator