MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-aj Structured version   Visualization version   GIF version

Definition df-aj 30725
Description: Define the adjoint of an operator (if it exists). The domain of 𝑈adj𝑊 is the set of all operators from 𝑈 to 𝑊 that have an adjoint. Definition 3.9-1 of [Kreyszig] p. 196, although we don't require that 𝑈 and 𝑊 be Hilbert spaces nor that the operators be linear. Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-aj adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
Distinct variable group:   𝑡,𝑠,𝑢,𝑤,𝑥,𝑦

Detailed syntax breakdown of Definition df-aj
StepHypRef Expression
1 caj 30723 . 2 class adj
2 vu . . 3 setvar 𝑢
3 vw . . 3 setvar 𝑤
4 cnv 30559 . . 3 class NrmCVec
52cv 1540 . . . . . . 7 class 𝑢
6 cba 30561 . . . . . . 7 class BaseSet
75, 6cfv 6481 . . . . . 6 class (BaseSet‘𝑢)
83cv 1540 . . . . . . 7 class 𝑤
98, 6cfv 6481 . . . . . 6 class (BaseSet‘𝑤)
10 vt . . . . . . 7 setvar 𝑡
1110cv 1540 . . . . . 6 class 𝑡
127, 9, 11wf 6477 . . . . 5 wff 𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤)
13 vs . . . . . . 7 setvar 𝑠
1413cv 1540 . . . . . 6 class 𝑠
159, 7, 14wf 6477 . . . . 5 wff 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢)
16 vx . . . . . . . . . . 11 setvar 𝑥
1716cv 1540 . . . . . . . . . 10 class 𝑥
1817, 11cfv 6481 . . . . . . . . 9 class (𝑡𝑥)
19 vy . . . . . . . . . 10 setvar 𝑦
2019cv 1540 . . . . . . . . 9 class 𝑦
21 cdip 30675 . . . . . . . . . 10 class ·𝑖OLD
228, 21cfv 6481 . . . . . . . . 9 class (·𝑖OLD𝑤)
2318, 20, 22co 7346 . . . . . . . 8 class ((𝑡𝑥)(·𝑖OLD𝑤)𝑦)
2420, 14cfv 6481 . . . . . . . . 9 class (𝑠𝑦)
255, 21cfv 6481 . . . . . . . . 9 class (·𝑖OLD𝑢)
2617, 24, 25co 7346 . . . . . . . 8 class (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
2723, 26wceq 1541 . . . . . . 7 wff ((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
2827, 19, 9wral 3047 . . . . . 6 wff 𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
2928, 16, 7wral 3047 . . . . 5 wff 𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
3012, 15, 29w3a 1086 . . . 4 wff (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))
3130, 10, 13copab 5153 . . 3 class {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))}
322, 3, 4, 4, 31cmpo 7348 . 2 class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
331, 32wceq 1541 1 wff adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
Colors of variables: wff setvar class
This definition is referenced by:  ajfval  30784
  Copyright terms: Public domain W3C validator