MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-aj Structured version   Visualization version   GIF version

Definition df-aj 30778
Description: Define the adjoint of an operator (if it exists). The domain of 𝑈adj𝑊 is the set of all operators from 𝑈 to 𝑊 that have an adjoint. Definition 3.9-1 of [Kreyszig] p. 196, although we don't require that 𝑈 and 𝑊 be Hilbert spaces nor that the operators be linear. Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-aj adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
Distinct variable group:   𝑡,𝑠,𝑢,𝑤,𝑥,𝑦

Detailed syntax breakdown of Definition df-aj
StepHypRef Expression
1 caj 30776 . 2 class adj
2 vu . . 3 setvar 𝑢
3 vw . . 3 setvar 𝑤
4 cnv 30612 . . 3 class NrmCVec
52cv 1535 . . . . . . 7 class 𝑢
6 cba 30614 . . . . . . 7 class BaseSet
75, 6cfv 6562 . . . . . 6 class (BaseSet‘𝑢)
83cv 1535 . . . . . . 7 class 𝑤
98, 6cfv 6562 . . . . . 6 class (BaseSet‘𝑤)
10 vt . . . . . . 7 setvar 𝑡
1110cv 1535 . . . . . 6 class 𝑡
127, 9, 11wf 6558 . . . . 5 wff 𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤)
13 vs . . . . . . 7 setvar 𝑠
1413cv 1535 . . . . . 6 class 𝑠
159, 7, 14wf 6558 . . . . 5 wff 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢)
16 vx . . . . . . . . . . 11 setvar 𝑥
1716cv 1535 . . . . . . . . . 10 class 𝑥
1817, 11cfv 6562 . . . . . . . . 9 class (𝑡𝑥)
19 vy . . . . . . . . . 10 setvar 𝑦
2019cv 1535 . . . . . . . . 9 class 𝑦
21 cdip 30728 . . . . . . . . . 10 class ·𝑖OLD
228, 21cfv 6562 . . . . . . . . 9 class (·𝑖OLD𝑤)
2318, 20, 22co 7430 . . . . . . . 8 class ((𝑡𝑥)(·𝑖OLD𝑤)𝑦)
2420, 14cfv 6562 . . . . . . . . 9 class (𝑠𝑦)
255, 21cfv 6562 . . . . . . . . 9 class (·𝑖OLD𝑢)
2617, 24, 25co 7430 . . . . . . . 8 class (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
2723, 26wceq 1536 . . . . . . 7 wff ((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
2827, 19, 9wral 3058 . . . . . 6 wff 𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
2928, 16, 7wral 3058 . . . . 5 wff 𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
3012, 15, 29w3a 1086 . . . 4 wff (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))
3130, 10, 13copab 5209 . . 3 class {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))}
322, 3, 4, 4, 31cmpo 7432 . 2 class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
331, 32wceq 1536 1 wff adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
Colors of variables: wff setvar class
This definition is referenced by:  ajfval  30837
  Copyright terms: Public domain W3C validator