MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajfval Structured version   Visualization version   GIF version

Theorem ajfval 30841
Description: The adjoint function. (Contributed by NM, 25-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajfval.1 𝑋 = (BaseSet‘𝑈)
ajfval.2 𝑌 = (BaseSet‘𝑊)
ajfval.3 𝑃 = (·𝑖OLD𝑈)
ajfval.4 𝑄 = (·𝑖OLD𝑊)
ajfval.5 𝐴 = (𝑈adj𝑊)
Assertion
Ref Expression
ajfval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑈   𝑊,𝑠,𝑡,𝑥,𝑦   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑡,𝑠)   𝑃(𝑥,𝑦,𝑡,𝑠)   𝑄(𝑥,𝑦,𝑡,𝑠)   𝑋(𝑦)   𝑌(𝑥)

Proof of Theorem ajfval
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ajfval.5 . 2 𝐴 = (𝑈adj𝑊)
2 fveq2 6920 . . . . . . 7 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 ajfval.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
42, 3eqtr4di 2798 . . . . . 6 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
54feq2d 6733 . . . . 5 (𝑢 = 𝑈 → (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ↔ 𝑡:𝑋⟶(BaseSet‘𝑤)))
64feq3d 6734 . . . . 5 (𝑢 = 𝑈 → (𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ↔ 𝑠:(BaseSet‘𝑤)⟶𝑋))
7 fveq2 6920 . . . . . . . . . 10 (𝑢 = 𝑈 → (·𝑖OLD𝑢) = (·𝑖OLD𝑈))
8 ajfval.3 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
97, 8eqtr4di 2798 . . . . . . . . 9 (𝑢 = 𝑈 → (·𝑖OLD𝑢) = 𝑃)
109oveqd 7465 . . . . . . . 8 (𝑢 = 𝑈 → (𝑥(·𝑖OLD𝑢)(𝑠𝑦)) = (𝑥𝑃(𝑠𝑦)))
1110eqeq2d 2751 . . . . . . 7 (𝑢 = 𝑈 → (((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)) ↔ ((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦))))
1211ralbidv 3184 . . . . . 6 (𝑢 = 𝑈 → (∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)) ↔ ∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦))))
134, 12raleqbidv 3354 . . . . 5 (𝑢 = 𝑈 → (∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦))))
145, 6, 133anbi123d 1436 . . . 4 (𝑢 = 𝑈 → ((𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶𝑋 ∧ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)))))
1514opabbidv 5232 . . 3 (𝑢 = 𝑈 → {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))} = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶𝑋 ∧ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)))})
16 fveq2 6920 . . . . . . 7 (𝑤 = 𝑊 → (BaseSet‘𝑤) = (BaseSet‘𝑊))
17 ajfval.2 . . . . . . 7 𝑌 = (BaseSet‘𝑊)
1816, 17eqtr4di 2798 . . . . . 6 (𝑤 = 𝑊 → (BaseSet‘𝑤) = 𝑌)
1918feq3d 6734 . . . . 5 (𝑤 = 𝑊 → (𝑡:𝑋⟶(BaseSet‘𝑤) ↔ 𝑡:𝑋𝑌))
2018feq2d 6733 . . . . 5 (𝑤 = 𝑊 → (𝑠:(BaseSet‘𝑤)⟶𝑋𝑠:𝑌𝑋))
21 fveq2 6920 . . . . . . . . . 10 (𝑤 = 𝑊 → (·𝑖OLD𝑤) = (·𝑖OLD𝑊))
22 ajfval.4 . . . . . . . . . 10 𝑄 = (·𝑖OLD𝑊)
2321, 22eqtr4di 2798 . . . . . . . . 9 (𝑤 = 𝑊 → (·𝑖OLD𝑤) = 𝑄)
2423oveqd 7465 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = ((𝑡𝑥)𝑄𝑦))
2524eqeq1d 2742 . . . . . . 7 (𝑤 = 𝑊 → (((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2618, 25raleqbidv 3354 . . . . . 6 (𝑤 = 𝑊 → (∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2726ralbidv 3184 . . . . 5 (𝑤 = 𝑊 → (∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2819, 20, 273anbi123d 1436 . . . 4 (𝑤 = 𝑊 → ((𝑡:𝑋⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶𝑋 ∧ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2928opabbidv 5232 . . 3 (𝑤 = 𝑊 → {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶𝑋 ∧ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)))} = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
30 df-aj 30782 . . 3 adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
31 ovex 7481 . . . . 5 (𝑌m 𝑋) ∈ V
32 ovex 7481 . . . . 5 (𝑋m 𝑌) ∈ V
3331, 32xpex 7788 . . . 4 ((𝑌m 𝑋) × (𝑋m 𝑌)) ∈ V
3417fvexi 6934 . . . . . . . . . 10 𝑌 ∈ V
353fvexi 6934 . . . . . . . . . 10 𝑋 ∈ V
3634, 35elmap 8929 . . . . . . . . 9 (𝑡 ∈ (𝑌m 𝑋) ↔ 𝑡:𝑋𝑌)
3735, 34elmap 8929 . . . . . . . . 9 (𝑠 ∈ (𝑋m 𝑌) ↔ 𝑠:𝑌𝑋)
3836, 37anbi12i 627 . . . . . . . 8 ((𝑡 ∈ (𝑌m 𝑋) ∧ 𝑠 ∈ (𝑋m 𝑌)) ↔ (𝑡:𝑋𝑌𝑠:𝑌𝑋))
3938biimpri 228 . . . . . . 7 ((𝑡:𝑋𝑌𝑠:𝑌𝑋) → (𝑡 ∈ (𝑌m 𝑋) ∧ 𝑠 ∈ (𝑋m 𝑌)))
40393adant3 1132 . . . . . 6 ((𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) → (𝑡 ∈ (𝑌m 𝑋) ∧ 𝑠 ∈ (𝑋m 𝑌)))
4140ssopab2i 5569 . . . . 5 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} ⊆ {⟨𝑡, 𝑠⟩ ∣ (𝑡 ∈ (𝑌m 𝑋) ∧ 𝑠 ∈ (𝑋m 𝑌))}
42 df-xp 5706 . . . . 5 ((𝑌m 𝑋) × (𝑋m 𝑌)) = {⟨𝑡, 𝑠⟩ ∣ (𝑡 ∈ (𝑌m 𝑋) ∧ 𝑠 ∈ (𝑋m 𝑌))}
4341, 42sseqtrri 4046 . . . 4 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} ⊆ ((𝑌m 𝑋) × (𝑋m 𝑌))
4433, 43ssexi 5340 . . 3 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} ∈ V
4515, 29, 30, 44ovmpo 7610 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈adj𝑊) = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
461, 45eqtrid 2792 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {copab 5228   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  NrmCVeccnv 30616  BaseSetcba 30618  ·𝑖OLDcdip 30732  adjcaj 30780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-aj 30782
This theorem is referenced by:  ajfuni  30891  ajval  30893
  Copyright terms: Public domain W3C validator