| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-hmo | Structured version Visualization version GIF version | ||
| Description: Define the set of Hermitian (self-adjoint) operators on a normed complex vector space (normally a Hilbert space). Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hmo | ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chmo 30768 | . 2 class HmOp | |
| 2 | vu | . . 3 setvar 𝑢 | |
| 3 | cnv 30603 | . . 3 class NrmCVec | |
| 4 | vt | . . . . . . 7 setvar 𝑡 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑡 |
| 6 | 2 | cv 1539 | . . . . . . 7 class 𝑢 |
| 7 | caj 30767 | . . . . . . 7 class adj | |
| 8 | 6, 6, 7 | co 7431 | . . . . . 6 class (𝑢adj𝑢) |
| 9 | 5, 8 | cfv 6561 | . . . . 5 class ((𝑢adj𝑢)‘𝑡) |
| 10 | 9, 5 | wceq 1540 | . . . 4 wff ((𝑢adj𝑢)‘𝑡) = 𝑡 |
| 11 | 8 | cdm 5685 | . . . 4 class dom (𝑢adj𝑢) |
| 12 | 10, 4, 11 | crab 3436 | . . 3 class {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡} |
| 13 | 2, 3, 12 | cmpt 5225 | . 2 class (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) |
| 14 | 1, 13 | wceq 1540 | 1 wff HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: hmoval 30829 |
| Copyright terms: Public domain | W3C validator |