Detailed syntax breakdown of Definition df-algind
Step | Hyp | Ref
| Expression |
1 | | cai 21321 |
. 2
class
AlgInd |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | vk |
. . 3
setvar 𝑘 |
4 | | cvv 3432 |
. . 3
class
V |
5 | 2 | cv 1538 |
. . . . 5
class 𝑤 |
6 | | cbs 16912 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 6433 |
. . . 4
class
(Base‘𝑤) |
8 | 7 | cpw 4533 |
. . 3
class 𝒫
(Base‘𝑤) |
9 | | vf |
. . . . . . 7
setvar 𝑓 |
10 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
11 | 10 | cv 1538 |
. . . . . . . . 9
class 𝑣 |
12 | 3 | cv 1538 |
. . . . . . . . . 10
class 𝑘 |
13 | | cress 16941 |
. . . . . . . . . 10
class
↾s |
14 | 5, 12, 13 | co 7275 |
. . . . . . . . 9
class (𝑤 ↾s 𝑘) |
15 | | cmpl 21109 |
. . . . . . . . 9
class
mPoly |
16 | 11, 14, 15 | co 7275 |
. . . . . . . 8
class (𝑣 mPoly (𝑤 ↾s 𝑘)) |
17 | 16, 6 | cfv 6433 |
. . . . . . 7
class
(Base‘(𝑣 mPoly
(𝑤 ↾s
𝑘))) |
18 | | cid 5488 |
. . . . . . . . 9
class
I |
19 | 18, 11 | cres 5591 |
. . . . . . . 8
class ( I
↾ 𝑣) |
20 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
21 | | ces 21280 |
. . . . . . . . . . 11
class
evalSub |
22 | 11, 5, 21 | co 7275 |
. . . . . . . . . 10
class (𝑣 evalSub 𝑤) |
23 | 12, 22 | cfv 6433 |
. . . . . . . . 9
class ((𝑣 evalSub 𝑤)‘𝑘) |
24 | 20, 23 | cfv 6433 |
. . . . . . . 8
class (((𝑣 evalSub 𝑤)‘𝑘)‘𝑓) |
25 | 19, 24 | cfv 6433 |
. . . . . . 7
class ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)) |
26 | 9, 17, 25 | cmpt 5157 |
. . . . . 6
class (𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣))) |
27 | 26 | ccnv 5588 |
. . . . 5
class ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣))) |
28 | 27 | wfun 6427 |
. . . 4
wff Fun ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣))) |
29 | 28, 10, 8 | crab 3068 |
. . 3
class {𝑣 ∈ 𝒫
(Base‘𝑤) ∣ Fun
◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))} |
30 | 2, 3, 4, 8, 29 | cmpo 7277 |
. 2
class (𝑤 ∈ V, 𝑘 ∈ 𝒫 (Base‘𝑤) ↦ {𝑣 ∈ 𝒫 (Base‘𝑤) ∣ Fun ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))}) |
31 | 1, 30 | wceq 1539 |
1
wff AlgInd =
(𝑤 ∈ V, 𝑘 ∈ 𝒫
(Base‘𝑤) ↦
{𝑣 ∈ 𝒫
(Base‘𝑤) ∣ Fun
◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))}) |