Detailed syntax breakdown of Definition df-psd
| Step | Hyp | Ref
| Expression |
| 1 | | cpsd 22134 |
. 2
class
mPSDer |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vx |
. . . 4
setvar 𝑥 |
| 6 | 2 | cv 1539 |
. . . 4
class 𝑖 |
| 7 | | vf |
. . . . 5
setvar 𝑓 |
| 8 | 3 | cv 1539 |
. . . . . . 7
class 𝑟 |
| 9 | | cmps 21924 |
. . . . . . 7
class
mPwSer |
| 10 | 6, 8, 9 | co 7431 |
. . . . . 6
class (𝑖 mPwSer 𝑟) |
| 11 | | cbs 17247 |
. . . . . 6
class
Base |
| 12 | 10, 11 | cfv 6561 |
. . . . 5
class
(Base‘(𝑖
mPwSer 𝑟)) |
| 13 | | vk |
. . . . . 6
setvar 𝑘 |
| 14 | | vh |
. . . . . . . . . . 11
setvar ℎ |
| 15 | 14 | cv 1539 |
. . . . . . . . . 10
class ℎ |
| 16 | 15 | ccnv 5684 |
. . . . . . . . 9
class ◡ℎ |
| 17 | | cn 12266 |
. . . . . . . . 9
class
ℕ |
| 18 | 16, 17 | cima 5688 |
. . . . . . . 8
class (◡ℎ “ ℕ) |
| 19 | | cfn 8985 |
. . . . . . . 8
class
Fin |
| 20 | 18, 19 | wcel 2108 |
. . . . . . 7
wff (◡ℎ “ ℕ) ∈ Fin |
| 21 | | cn0 12526 |
. . . . . . . 8
class
ℕ0 |
| 22 | | cmap 8866 |
. . . . . . . 8
class
↑m |
| 23 | 21, 6, 22 | co 7431 |
. . . . . . 7
class
(ℕ0 ↑m 𝑖) |
| 24 | 20, 14, 23 | crab 3436 |
. . . . . 6
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 25 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 26 | 13 | cv 1539 |
. . . . . . . . 9
class 𝑘 |
| 27 | 25, 26 | cfv 6561 |
. . . . . . . 8
class (𝑘‘𝑥) |
| 28 | | c1 11156 |
. . . . . . . 8
class
1 |
| 29 | | caddc 11158 |
. . . . . . . 8
class
+ |
| 30 | 27, 28, 29 | co 7431 |
. . . . . . 7
class ((𝑘‘𝑥) + 1) |
| 31 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 32 | 31, 5 | weq 1962 |
. . . . . . . . . . 11
wff 𝑦 = 𝑥 |
| 33 | | cc0 11155 |
. . . . . . . . . . 11
class
0 |
| 34 | 32, 28, 33 | cif 4525 |
. . . . . . . . . 10
class if(𝑦 = 𝑥, 1, 0) |
| 35 | 31, 6, 34 | cmpt 5225 |
. . . . . . . . 9
class (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) |
| 36 | 29 | cof 7695 |
. . . . . . . . 9
class
∘f + |
| 37 | 26, 35, 36 | co 7431 |
. . . . . . . 8
class (𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))) |
| 38 | 7 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 39 | 37, 38 | cfv 6561 |
. . . . . . 7
class (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))) |
| 40 | | cmg 19085 |
. . . . . . . 8
class
.g |
| 41 | 8, 40 | cfv 6561 |
. . . . . . 7
class
(.g‘𝑟) |
| 42 | 30, 39, 41 | co 7431 |
. . . . . 6
class (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))) |
| 43 | 13, 24, 42 | cmpt 5225 |
. . . . 5
class (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))) |
| 44 | 7, 12, 43 | cmpt 5225 |
. . . 4
class (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))) |
| 45 | 5, 6, 44 | cmpt 5225 |
. . 3
class (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) |
| 46 | 2, 3, 4, 4, 45 | cmpo 7433 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
| 47 | 1, 46 | wceq 1540 |
1
wff mPSDer =
(𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |