Detailed syntax breakdown of Definition df-psd
Step | Hyp | Ref
| Expression |
1 | | cpsd 21230 |
. 2
class
mPSDer |
2 | | vi |
. . 3
setvar 𝑖 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 3422 |
. . 3
class
V |
5 | | vx |
. . . 4
setvar 𝑥 |
6 | 2 | cv 1538 |
. . . 4
class 𝑖 |
7 | | vf |
. . . . 5
setvar 𝑓 |
8 | 3 | cv 1538 |
. . . . . . 7
class 𝑟 |
9 | | cmps 21017 |
. . . . . . 7
class
mPwSer |
10 | 6, 8, 9 | co 7255 |
. . . . . 6
class (𝑖 mPwSer 𝑟) |
11 | | cbs 16840 |
. . . . . 6
class
Base |
12 | 10, 11 | cfv 6418 |
. . . . 5
class
(Base‘(𝑖
mPwSer 𝑟)) |
13 | | vk |
. . . . . 6
setvar 𝑘 |
14 | | vh |
. . . . . . . . . . 11
setvar ℎ |
15 | 14 | cv 1538 |
. . . . . . . . . 10
class ℎ |
16 | 15 | ccnv 5579 |
. . . . . . . . 9
class ◡ℎ |
17 | | cn 11903 |
. . . . . . . . 9
class
ℕ |
18 | 16, 17 | cima 5583 |
. . . . . . . 8
class (◡ℎ “ ℕ) |
19 | | cfn 8691 |
. . . . . . . 8
class
Fin |
20 | 18, 19 | wcel 2108 |
. . . . . . 7
wff (◡ℎ “ ℕ) ∈ Fin |
21 | | cn0 12163 |
. . . . . . . 8
class
ℕ0 |
22 | | cmap 8573 |
. . . . . . . 8
class
↑m |
23 | 21, 6, 22 | co 7255 |
. . . . . . 7
class
(ℕ0 ↑m 𝑖) |
24 | 20, 14, 23 | crab 3067 |
. . . . . 6
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
25 | 5 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
26 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑘 |
27 | 25, 26 | cfv 6418 |
. . . . . . . 8
class (𝑘‘𝑥) |
28 | | c1 10803 |
. . . . . . . 8
class
1 |
29 | | caddc 10805 |
. . . . . . . 8
class
+ |
30 | 27, 28, 29 | co 7255 |
. . . . . . 7
class ((𝑘‘𝑥) + 1) |
31 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
32 | 31, 5 | weq 1967 |
. . . . . . . . . . 11
wff 𝑦 = 𝑥 |
33 | | cc0 10802 |
. . . . . . . . . . 11
class
0 |
34 | 32, 28, 33 | cif 4456 |
. . . . . . . . . 10
class if(𝑦 = 𝑥, 1, 0) |
35 | 31, 6, 34 | cmpt 5153 |
. . . . . . . . 9
class (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) |
36 | 29 | cof 7509 |
. . . . . . . . 9
class
∘f + |
37 | 26, 35, 36 | co 7255 |
. . . . . . . 8
class (𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))) |
38 | 7 | cv 1538 |
. . . . . . . 8
class 𝑓 |
39 | 37, 38 | cfv 6418 |
. . . . . . 7
class (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))) |
40 | | cmg 18615 |
. . . . . . . 8
class
.g |
41 | 8, 40 | cfv 6418 |
. . . . . . 7
class
(.g‘𝑟) |
42 | 30, 39, 41 | co 7255 |
. . . . . 6
class (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))) |
43 | 13, 24, 42 | cmpt 5153 |
. . . . 5
class (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))) |
44 | 7, 12, 43 | cmpt 5153 |
. . . 4
class (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))) |
45 | 5, 6, 44 | cmpt 5153 |
. . 3
class (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) |
46 | 2, 3, 4, 4, 45 | cmpo 7257 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
47 | 1, 46 | wceq 1539 |
1
wff mPSDer =
(𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |