HomeHome Metamath Proof Explorer
Theorem List (p. 217 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30166)
  Hilbert Space Explorer  Hilbert Space Explorer
(30167-31689)
  Users' Mathboxes  Users' Mathboxes
(31690-47842)
 

Theorem List for Metamath Proof Explorer - 21601-21700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremopsrle 21601* An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   π΅ = (Baseβ€˜π‘†)    &    < = (ltβ€˜π‘…)    &   πΆ = (𝑇 <bag 𝐼)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &    ≀ = (leβ€˜π‘‚)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ ≀ = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))})
 
Theoremopsrval2 21602 Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &    ≀ = (leβ€˜π‘‚)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ 𝑂 = (𝑆 sSet ⟨(leβ€˜ndx), ≀ ⟩))
 
Theoremopsrbaslem 21603 Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 1-Nov-2024.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    &   πΈ = Slot (πΈβ€˜ndx)    &   (πΈβ€˜ndx) β‰  (leβ€˜ndx)    β‡’   (πœ‘ β†’ (πΈβ€˜π‘†) = (πΈβ€˜π‘‚))
 
TheoremopsrbaslemOLD 21604 Obsolete version of opsrbaslem 21603 as of 1-Nov-2024. Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    &   πΈ = Slot 𝑁    &   π‘ ∈ β„•    &   π‘ < 10    β‡’   (πœ‘ β†’ (πΈβ€˜π‘†) = (πΈβ€˜π‘‚))
 
Theoremopsrbas 21605 The base set of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ (Baseβ€˜π‘†) = (Baseβ€˜π‘‚))
 
TheoremopsrbasOLD 21606 Obsolete version of opsrbaslem 21603 as of 1-Nov-2024. The base set of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ (Baseβ€˜π‘†) = (Baseβ€˜π‘‚))
 
Theoremopsrplusg 21607 The addition operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ (+gβ€˜π‘†) = (+gβ€˜π‘‚))
 
TheoremopsrplusgOLD 21608 Obsolete version of opsrplusg 21607 as of 1-Nov-2024. The addition operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ (+gβ€˜π‘†) = (+gβ€˜π‘‚))
 
Theoremopsrmulr 21609 The multiplication operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ (.rβ€˜π‘†) = (.rβ€˜π‘‚))
 
TheoremopsrmulrOLD 21610 Obsolete version of opsrmulr 21609 as of 1-Nov-2024. The multiplication operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ (.rβ€˜π‘†) = (.rβ€˜π‘‚))
 
Theoremopsrvsca 21611 The scalar product operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ ( ·𝑠 β€˜π‘†) = ( ·𝑠 β€˜π‘‚))
 
TheoremopsrvscaOLD 21612 Obsolete version of opsrvsca 21611 as of 1-Nov-2024. The scalar product of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ ( ·𝑠 β€˜π‘†) = ( ·𝑠 β€˜π‘‚))
 
Theoremopsrsca 21613 The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    β‡’   (πœ‘ β†’ 𝑅 = (Scalarβ€˜π‘‚))
 
TheoremopsrscaOLD 21614 Obsolete version of opsrsca 21613 as of 1-Nov-2024. The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (𝐼 mPwSer 𝑅)    &   π‘‚ = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    β‡’   (πœ‘ β†’ 𝑅 = (Scalarβ€˜π‘‚))
 
Theoremopsrtoslem1 21615* Lemma for opsrtos 21617. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Toset)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    &   (πœ‘ β†’ 𝑇 We 𝐼)    &   π‘† = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    < = (ltβ€˜π‘…)    &   πΆ = (𝑇 <bag 𝐼)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ“ ↔ βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))))    &    ≀ = (leβ€˜π‘‚)    β‡’   (πœ‘ β†’ ≀ = (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆͺ ( I β†Ύ 𝐡)))
 
Theoremopsrtoslem2 21616* Lemma for opsrtos 21617. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Toset)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    &   (πœ‘ β†’ 𝑇 We 𝐼)    &   π‘† = (𝐼 mPwSer 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &    < = (ltβ€˜π‘…)    &   πΆ = (𝑇 <bag 𝐼)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ“ ↔ βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))))    &    ≀ = (leβ€˜π‘‚)    β‡’   (πœ‘ β†’ 𝑂 ∈ Toset)
 
Theoremopsrtos 21617 The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Toset)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    &   (πœ‘ β†’ 𝑇 We 𝐼)    β‡’   (πœ‘ β†’ 𝑂 ∈ Toset)
 
Theoremopsrso 21618 The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Toset)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    &   (πœ‘ β†’ 𝑇 We 𝐼)    &    ≀ = (ltβ€˜π‘‚)    &   π΅ = (Baseβ€˜π‘‚)    β‡’   (πœ‘ β†’ ≀ Or 𝐡)
 
Theoremopsrcrng 21619 The ring of ordered power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ 𝑂 ∈ CRing)
 
Theoremopsrassa 21620 The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))    β‡’   (πœ‘ β†’ 𝑂 ∈ AssAlg)
 
Theoremmplmon2 21621* Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &    Β· = ( ·𝑠 β€˜π‘ƒ)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    1 = (1rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 Β· (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
 
Theorempsrbag0 21622* The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    β‡’   (𝐼 ∈ 𝑉 β†’ (𝐼 Γ— {0}) ∈ 𝐷)
 
Theorempsrbagsn 21623* A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    β‡’   (𝐼 ∈ 𝑉 β†’ (π‘₯ ∈ 𝐼 ↦ if(π‘₯ = 𝐾, 1, 0)) ∈ 𝐷)
 
Theoremmplascl 21624* Value of the scalar injection into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘…)    &   π΄ = (algScβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (π΄β€˜π‘‹) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 Γ— {0}), 𝑋, 0 )))
 
Theoremmplasclf 21625 The scalar injection is a function into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &   πΎ = (Baseβ€˜π‘…)    &   π΄ = (algScβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ 𝐴:𝐾⟢𝐡)
 
Theoremsubrgascl 21626 The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΄ = (algScβ€˜π‘ƒ)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPoly 𝐻)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    &   πΆ = (algScβ€˜π‘ˆ)    β‡’   (πœ‘ β†’ 𝐢 = (𝐴 β†Ύ 𝑇))
 
Theoremsubrgasclcl 21627 The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΄ = (algScβ€˜π‘ƒ)    &   π» = (𝑅 β†Ύs 𝑇)    &   π‘ˆ = (𝐼 mPoly 𝐻)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))    &   π΅ = (Baseβ€˜π‘ˆ)    &   πΎ = (Baseβ€˜π‘…)    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    β‡’   (πœ‘ β†’ ((π΄β€˜π‘‹) ∈ 𝐡 ↔ 𝑋 ∈ 𝑇))
 
Theoremmplmon2cl 21628* A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &   πΆ = (Baseβ€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   π΅ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐢)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    β‡’   (πœ‘ β†’ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐡)
 
Theoremmplmon2mul 21629* Product of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &   πΆ = (Baseβ€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &    βˆ™ = (.rβ€˜π‘ƒ)    &    Β· = (.rβ€˜π‘…)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    &   (πœ‘ β†’ π‘Œ ∈ 𝐷)    &   (πœ‘ β†’ 𝐹 ∈ 𝐢)    &   (πœ‘ β†’ 𝐺 ∈ 𝐢)    β‡’   (πœ‘ β†’ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 )) βˆ™ (𝑦 ∈ 𝐷 ↦ if(𝑦 = π‘Œ, 𝐺, 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + π‘Œ), (𝐹 Β· 𝐺), 0 )))
 
Theoremmplind 21630* Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.)
𝐾 = (Baseβ€˜π‘…)    &   π‘‰ = (𝐼 mVar 𝑅)    &   π‘Œ = (𝐼 mPoly 𝑅)    &    + = (+gβ€˜π‘Œ)    &    Β· = (.rβ€˜π‘Œ)    &   πΆ = (algScβ€˜π‘Œ)    &   π΅ = (Baseβ€˜π‘Œ)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) β†’ (π‘₯ + 𝑦) ∈ 𝐻)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) β†’ (π‘₯ Β· 𝑦) ∈ 𝐻)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐾) β†’ (πΆβ€˜π‘₯) ∈ 𝐻)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐼) β†’ (π‘‰β€˜π‘₯) ∈ 𝐻)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    β‡’   (πœ‘ β†’ 𝑋 ∈ 𝐻)
 
Theoremmplcoe4 21631* Decompose a polynomial into a finite sum of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   π· = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}    &    0 = (0gβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ 𝑋 = (𝑃 Ξ£g (π‘˜ ∈ 𝐷 ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 = π‘˜, (π‘‹β€˜π‘˜), 0 )))))
 
11.3.2  Polynomial evaluation
 
Syntaxces 21632 Evaluation of a multivariate polynomial in a subring.
class evalSub
 
Syntaxcevl 21633 Evaluation of a multivariate polynomial.
class eval
 
Definitiondf-evls 21634* Define the evaluation map for the polynomial algebra. The function ((𝐼 evalSub 𝑆)β€˜π‘…):π‘‰βŸΆ(𝑆 ↑m (𝑆 ↑m 𝐼)) makes sense when 𝐼 is an index set, 𝑆 is a ring, 𝑅 is a subring of 𝑆, and where 𝑉 is the set of polynomials in (𝐼 mPoly 𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments πΌβŸΆπ‘† of the variables to elements of 𝑆 formed by evaluating the polynomial with the given assignments. (Contributed by Stefan O'Rear, 11-Mar-2015.)
evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Baseβ€˜π‘ ) / π‘β¦Œ(π‘Ÿ ∈ (SubRingβ€˜π‘ ) ↦ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)))))))
 
Definitiondf-evl 21635* A simplification of evalSub when the evaluation ring is the same as the coefficient ring. (Contributed by Stefan O'Rear, 19-Mar-2015.)
eval = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ ((𝑖 evalSub π‘Ÿ)β€˜(Baseβ€˜π‘Ÿ)))
 
Theoremevlslem4 21636* The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 18-Jul-2019.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐼) β†’ 𝑋 ∈ 𝐡)    &   ((πœ‘ ∧ 𝑦 ∈ 𝐽) β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝐽 ∈ π‘Š)    β‡’   (πœ‘ β†’ ((π‘₯ ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 Β· π‘Œ)) supp 0 ) βŠ† (((π‘₯ ∈ 𝐼 ↦ 𝑋) supp 0 ) Γ— ((𝑦 ∈ 𝐽 ↦ π‘Œ) supp 0 )))
 
Theorempsrbagev1 21637* A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   πΆ = (Baseβ€˜π‘‡)    &    Β· = (.gβ€˜π‘‡)    &    0 = (0gβ€˜π‘‡)    &   (πœ‘ β†’ 𝑇 ∈ CMnd)    &   (πœ‘ β†’ 𝐡 ∈ 𝐷)    &   (πœ‘ β†’ 𝐺:𝐼⟢𝐢)    β‡’   (πœ‘ β†’ ((𝐡 ∘f Β· 𝐺):𝐼⟢𝐢 ∧ (𝐡 ∘f Β· 𝐺) finSupp 0 ))
 
Theorempsrbagev1OLD 21638* Obsolete version of psrbagev1 21637 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   πΆ = (Baseβ€˜π‘‡)    &    Β· = (.gβ€˜π‘‡)    &    0 = (0gβ€˜π‘‡)    &   (πœ‘ β†’ 𝑇 ∈ CMnd)    &   (πœ‘ β†’ 𝐡 ∈ 𝐷)    &   (πœ‘ β†’ 𝐺:𝐼⟢𝐢)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    β‡’   (πœ‘ β†’ ((𝐡 ∘f Β· 𝐺):𝐼⟢𝐢 ∧ (𝐡 ∘f Β· 𝐺) finSupp 0 ))
 
Theorempsrbagev2 21639* Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   πΆ = (Baseβ€˜π‘‡)    &    Β· = (.gβ€˜π‘‡)    &   (πœ‘ β†’ 𝑇 ∈ CMnd)    &   (πœ‘ β†’ 𝐡 ∈ 𝐷)    &   (πœ‘ β†’ 𝐺:𝐼⟢𝐢)    β‡’   (πœ‘ β†’ (𝑇 Ξ£g (𝐡 ∘f Β· 𝐺)) ∈ 𝐢)
 
Theorempsrbagev2OLD 21640* Obsolete version of psrbagev2 21639 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   πΆ = (Baseβ€˜π‘‡)    &    Β· = (.gβ€˜π‘‡)    &   (πœ‘ β†’ 𝑇 ∈ CMnd)    &   (πœ‘ β†’ 𝐡 ∈ 𝐷)    &   (πœ‘ β†’ 𝐺:𝐼⟢𝐢)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    β‡’   (πœ‘ β†’ (𝑇 Ξ£g (𝐡 ∘f Β· 𝐺)) ∈ 𝐢)
 
Theoremevlslem2 21641* A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    Β· = (.rβ€˜π‘†)    &    0 = (0gβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝐸 ∈ (𝑃 GrpHom 𝑆))    &   ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷))) β†’ (πΈβ€˜(π‘˜ ∈ 𝐷 ↦ if(π‘˜ = (𝑗 ∘f + 𝑖), ((π‘₯β€˜π‘—)(.rβ€˜π‘…)(π‘¦β€˜π‘–)), 0 ))) = ((πΈβ€˜(π‘˜ ∈ 𝐷 ↦ if(π‘˜ = 𝑗, (π‘₯β€˜π‘—), 0 ))) Β· (πΈβ€˜(π‘˜ ∈ 𝐷 ↦ if(π‘˜ = 𝑖, (π‘¦β€˜π‘–), 0 )))))    β‡’   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (πΈβ€˜(π‘₯(.rβ€˜π‘ƒ)𝑦)) = ((πΈβ€˜π‘₯) Β· (πΈβ€˜π‘¦)))
 
Theoremevlslem3 21642* Lemma for evlseu 21645. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 11-Apr-2024.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &   πΆ = (Baseβ€˜π‘†)    &   πΎ = (Baseβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   π‘‡ = (mulGrpβ€˜π‘†)    &    ↑ = (.gβ€˜π‘‡)    &    Β· = (.rβ€˜π‘†)    &   π‘‰ = (𝐼 mVar 𝑅)    &   πΈ = (𝑝 ∈ 𝐡 ↦ (𝑆 Ξ£g (𝑏 ∈ 𝐷 ↦ ((πΉβ€˜(π‘β€˜π‘)) Β· (𝑇 Ξ£g (𝑏 ∘f ↑ 𝐺))))))    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))    &   (πœ‘ β†’ 𝐺:𝐼⟢𝐢)    &    0 = (0gβ€˜π‘…)    &   (πœ‘ β†’ 𝐴 ∈ 𝐷)    &   (πœ‘ β†’ 𝐻 ∈ 𝐾)    β‡’   (πœ‘ β†’ (πΈβ€˜(π‘₯ ∈ 𝐷 ↦ if(π‘₯ = 𝐴, 𝐻, 0 ))) = ((πΉβ€˜π») Β· (𝑇 Ξ£g (𝐴 ∘f ↑ 𝐺))))
 
Theoremevlslem6 21643* Lemma for evlseu 21645. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &   πΆ = (Baseβ€˜π‘†)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   π‘‡ = (mulGrpβ€˜π‘†)    &    ↑ = (.gβ€˜π‘‡)    &    Β· = (.rβ€˜π‘†)    &   π‘‰ = (𝐼 mVar 𝑅)    &   πΈ = (𝑝 ∈ 𝐡 ↦ (𝑆 Ξ£g (𝑏 ∈ 𝐷 ↦ ((πΉβ€˜(π‘β€˜π‘)) Β· (𝑇 Ξ£g (𝑏 ∘f ↑ 𝐺))))))    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))    &   (πœ‘ β†’ 𝐺:𝐼⟢𝐢)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ ((𝑏 ∈ 𝐷 ↦ ((πΉβ€˜(π‘Œβ€˜π‘)) Β· (𝑇 Ξ£g (𝑏 ∘f ↑ 𝐺)))):𝐷⟢𝐢 ∧ (𝑏 ∈ 𝐷 ↦ ((πΉβ€˜(π‘Œβ€˜π‘)) Β· (𝑇 Ξ£g (𝑏 ∘f ↑ 𝐺)))) finSupp (0gβ€˜π‘†)))
 
Theoremevlslem1 21644* Lemma for evlseu 21645, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &   πΆ = (Baseβ€˜π‘†)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   π‘‡ = (mulGrpβ€˜π‘†)    &    ↑ = (.gβ€˜π‘‡)    &    Β· = (.rβ€˜π‘†)    &   π‘‰ = (𝐼 mVar 𝑅)    &   πΈ = (𝑝 ∈ 𝐡 ↦ (𝑆 Ξ£g (𝑏 ∈ 𝐷 ↦ ((πΉβ€˜(π‘β€˜π‘)) Β· (𝑇 Ξ£g (𝑏 ∘f ↑ 𝐺))))))    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))    &   (πœ‘ β†’ 𝐺:𝐼⟢𝐢)    &   π΄ = (algScβ€˜π‘ƒ)    β‡’   (πœ‘ β†’ (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸 ∘ 𝐴) = 𝐹 ∧ (𝐸 ∘ 𝑉) = 𝐺))
 
Theoremevlseu 21645* For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.)
𝑃 = (𝐼 mPoly 𝑅)    &   πΆ = (Baseβ€˜π‘†)    &   π΄ = (algScβ€˜π‘ƒ)    &   π‘‰ = (𝐼 mVar 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))    &   (πœ‘ β†’ 𝐺:𝐼⟢𝐢)    β‡’   (πœ‘ β†’ βˆƒ!π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
 
Theoremreldmevls 21646 Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Rel dom evalSub
 
Theoremmpfrcl 21647 Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015.)
𝑄 = ran ((𝐼 evalSub 𝑆)β€˜π‘…)    β‡’   (𝑋 ∈ 𝑄 β†’ (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)))
 
Theoremevlsval 21648* Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015.) (Revised by AV, 18-Sep-2021.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘Š = (𝐼 mPoly π‘ˆ)    &   π‘‰ = (𝐼 mVar π‘ˆ)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π‘‡ = (𝑆 ↑s (𝐡 ↑m 𝐼))    &   π΅ = (Baseβ€˜π‘†)    &   π΄ = (algScβ€˜π‘Š)    &   π‘‹ = (π‘₯ ∈ 𝑅 ↦ ((𝐡 ↑m 𝐼) Γ— {π‘₯}))    &   π‘Œ = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ (𝐡 ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))    β‡’   ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)) β†’ 𝑄 = (℩𝑓 ∈ (π‘Š RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = π‘Œ)))
 
Theoremevlsval2 21649* Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘Š = (𝐼 mPoly π‘ˆ)    &   π‘‰ = (𝐼 mVar π‘ˆ)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π‘‡ = (𝑆 ↑s (𝐡 ↑m 𝐼))    &   π΅ = (Baseβ€˜π‘†)    &   π΄ = (algScβ€˜π‘Š)    &   π‘‹ = (π‘₯ ∈ 𝑅 ↦ ((𝐡 ↑m 𝐼) Γ— {π‘₯}))    &   π‘Œ = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ (𝐡 ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))    β‡’   ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)) β†’ (𝑄 ∈ (π‘Š RingHom 𝑇) ∧ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = π‘Œ)))
 
Theoremevlsrhm 21650 Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Stefan O'Rear, 12-Mar-2015.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘Š = (𝐼 mPoly π‘ˆ)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π‘‡ = (𝑆 ↑s (𝐡 ↑m 𝐼))    &   π΅ = (Baseβ€˜π‘†)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)) β†’ 𝑄 ∈ (π‘Š RingHom 𝑇))
 
Theoremevlssca 21651 Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘Š = (𝐼 mPoly π‘ˆ)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &   π΄ = (algScβ€˜π‘Š)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   (πœ‘ β†’ 𝑋 ∈ 𝑅)    β‡’   (πœ‘ β†’ (π‘„β€˜(π΄β€˜π‘‹)) = ((𝐡 ↑m 𝐼) Γ— {𝑋}))
 
Theoremevlsvar 21652* Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘‰ = (𝐼 mVar π‘ˆ)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   (πœ‘ β†’ 𝑋 ∈ 𝐼)    β‡’   (πœ‘ β†’ (π‘„β€˜(π‘‰β€˜π‘‹)) = (𝑔 ∈ (𝐡 ↑m 𝐼) ↦ (π‘”β€˜π‘‹)))
 
Theoremevlsgsumadd 21653* Polynomial evaluation maps (additive) group sums to group sums. (Contributed by SN, 13-Feb-2024.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘Š = (𝐼 mPoly π‘ˆ)    &    0 = (0gβ€˜π‘Š)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π‘ƒ = (𝑆 ↑s (𝐾 ↑m 𝐼))    &   πΎ = (Baseβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘Š)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   ((πœ‘ ∧ π‘₯ ∈ 𝑁) β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑁 βŠ† β„•0)    &   (πœ‘ β†’ (π‘₯ ∈ 𝑁 ↦ π‘Œ) finSupp 0 )    β‡’   (πœ‘ β†’ (π‘„β€˜(π‘Š Ξ£g (π‘₯ ∈ 𝑁 ↦ π‘Œ))) = (𝑃 Ξ£g (π‘₯ ∈ 𝑁 ↦ (π‘„β€˜π‘Œ))))
 
Theoremevlsgsummul 21654* Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘Š = (𝐼 mPoly π‘ˆ)    &   πΊ = (mulGrpβ€˜π‘Š)    &    1 = (1rβ€˜π‘Š)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π‘ƒ = (𝑆 ↑s (𝐾 ↑m 𝐼))    &   π» = (mulGrpβ€˜π‘ƒ)    &   πΎ = (Baseβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘Š)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   ((πœ‘ ∧ π‘₯ ∈ 𝑁) β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑁 βŠ† β„•0)    &   (πœ‘ β†’ (π‘₯ ∈ 𝑁 ↦ π‘Œ) finSupp 1 )    β‡’   (πœ‘ β†’ (π‘„β€˜(𝐺 Ξ£g (π‘₯ ∈ 𝑁 ↦ π‘Œ))) = (𝐻 Ξ£g (π‘₯ ∈ 𝑁 ↦ (π‘„β€˜π‘Œ))))
 
Theoremevlspw 21655 Polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘Š = (𝐼 mPoly π‘ˆ)    &   πΊ = (mulGrpβ€˜π‘Š)    &    ↑ = (.gβ€˜πΊ)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π‘ƒ = (𝑆 ↑s (𝐾 ↑m 𝐼))    &   π» = (mulGrpβ€˜π‘ƒ)    &   πΎ = (Baseβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘Š)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (π‘„β€˜(𝑁 ↑ 𝑋)) = (𝑁(.gβ€˜π»)(π‘„β€˜π‘‹)))
 
Theoremevlsvarpw 21656 Polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by SN, 21-Feb-2024.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘Š = (𝐼 mPoly π‘ˆ)    &   πΊ = (mulGrpβ€˜π‘Š)    &    ↑ = (.gβ€˜πΊ)    &   π‘‹ = ((𝐼 mVar π‘ˆ)β€˜π‘Œ)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π‘ƒ = (𝑆 ↑s (𝐡 ↑m 𝐼))    &   π» = (mulGrpβ€˜π‘ƒ)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝐼)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    β‡’   (πœ‘ β†’ (π‘„β€˜(𝑁 ↑ 𝑋)) = (𝑁(.gβ€˜π»)(π‘„β€˜π‘‹)))
 
Theoremevlval 21657 Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
𝑄 = (𝐼 eval 𝑅)    &   π΅ = (Baseβ€˜π‘…)    β‡’   π‘„ = ((𝐼 evalSub 𝑅)β€˜π΅)
 
Theoremevlrhm 21658 The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑄 = (𝐼 eval 𝑅)    &   π΅ = (Baseβ€˜π‘…)    &   π‘Š = (𝐼 mPoly 𝑅)    &   π‘‡ = (𝑅 ↑s (𝐡 ↑m 𝐼))    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) β†’ 𝑄 ∈ (π‘Š RingHom 𝑇))
 
Theoremevlsscasrng 21659 The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘‚ = (𝐼 eval 𝑆)    &   π‘Š = (𝐼 mPoly π‘ˆ)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑆)    &   π΅ = (Baseβ€˜π‘†)    &   π΄ = (algScβ€˜π‘Š)    &   πΆ = (algScβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   (πœ‘ β†’ 𝑋 ∈ 𝑅)    β‡’   (πœ‘ β†’ (π‘„β€˜(π΄β€˜π‘‹)) = (π‘‚β€˜(πΆβ€˜π‘‹)))
 
Theoremevlsca 21660 Simple polynomial evaluation maps scalars to constant functions. (Contributed by AV, 12-Sep-2019.)
𝑄 = (𝐼 eval 𝑆)    &   π‘Š = (𝐼 mPoly 𝑆)    &   π΅ = (Baseβ€˜π‘†)    &   π΄ = (algScβ€˜π‘Š)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (π‘„β€˜(π΄β€˜π‘‹)) = ((𝐡 ↑m 𝐼) Γ— {𝑋}))
 
Theoremevlsvarsrng 21661 The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.)
𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π‘‚ = (𝐼 eval 𝑆)    &   π‘‰ = (𝐼 mVar π‘ˆ)    &   π‘ˆ = (𝑆 β†Ύs 𝑅)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝐼 ∈ 𝐴)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   (πœ‘ β†’ 𝑋 ∈ 𝐼)    β‡’   (πœ‘ β†’ (π‘„β€˜(π‘‰β€˜π‘‹)) = (π‘‚β€˜(π‘‰β€˜π‘‹)))
 
Theoremevlvar 21662* Simple polynomial evaluation maps variables to projections. (Contributed by AV, 12-Sep-2019.)
𝑄 = (𝐼 eval 𝑆)    &   π‘‰ = (𝐼 mVar 𝑆)    &   π΅ = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑋 ∈ 𝐼)    β‡’   (πœ‘ β†’ (π‘„β€˜(π‘‰β€˜π‘‹)) = (𝑔 ∈ (𝐡 ↑m 𝐼) ↦ (π‘”β€˜π‘‹)))
 
Theoremmpfconst 21663 Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝐡 = (Baseβ€˜π‘†)    &   π‘„ = ran ((𝐼 evalSub 𝑆)β€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   (πœ‘ β†’ 𝑋 ∈ 𝑅)    β‡’   (πœ‘ β†’ ((𝐡 ↑m 𝐼) Γ— {𝑋}) ∈ 𝑄)
 
Theoremmpfproj 21664* Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015.)
𝐡 = (Baseβ€˜π‘†)    &   π‘„ = ran ((𝐼 evalSub 𝑆)β€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑆 ∈ CRing)    &   (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))    &   (πœ‘ β†’ 𝐽 ∈ 𝐼)    β‡’   (πœ‘ β†’ (𝑓 ∈ (𝐡 ↑m 𝐼) ↦ (π‘“β€˜π½)) ∈ 𝑄)
 
Theoremmpfsubrg 21665 Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by AV, 19-Sep-2021.)
𝑄 = ran ((𝐼 evalSub 𝑆)β€˜π‘…)    β‡’   ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)) β†’ 𝑄 ∈ (SubRingβ€˜(𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼))))
 
Theoremmpff 21666 Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝑄 = ran ((𝐼 evalSub 𝑆)β€˜π‘…)    &   π΅ = (Baseβ€˜π‘†)    β‡’   (𝐹 ∈ 𝑄 β†’ 𝐹:(𝐡 ↑m 𝐼)⟢𝐡)
 
Theoremmpfaddcl 21667 The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝑄 = ran ((𝐼 evalSub 𝑆)β€˜π‘…)    &    + = (+gβ€˜π‘†)    β‡’   ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) β†’ (𝐹 ∘f + 𝐺) ∈ 𝑄)
 
Theoremmpfmulcl 21668 The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝑄 = ran ((𝐼 evalSub 𝑆)β€˜π‘…)    &    Β· = (.rβ€˜π‘†)    β‡’   ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) β†’ (𝐹 ∘f Β· 𝐺) ∈ 𝑄)
 
Theoremmpfind 21669* Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝐡 = (Baseβ€˜π‘†)    &    + = (+gβ€˜π‘†)    &    Β· = (.rβ€˜π‘†)    &   π‘„ = ran ((𝐼 evalSub 𝑆)β€˜π‘…)    &   ((πœ‘ ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ πœ‚))) β†’ 𝜁)    &   ((πœ‘ ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ πœ‚))) β†’ 𝜎)    &   (π‘₯ = ((𝐡 ↑m 𝐼) Γ— {𝑓}) β†’ (πœ“ ↔ πœ’))    &   (π‘₯ = (𝑔 ∈ (𝐡 ↑m 𝐼) ↦ (π‘”β€˜π‘“)) β†’ (πœ“ ↔ πœƒ))    &   (π‘₯ = 𝑓 β†’ (πœ“ ↔ 𝜏))    &   (π‘₯ = 𝑔 β†’ (πœ“ ↔ πœ‚))    &   (π‘₯ = (𝑓 ∘f + 𝑔) β†’ (πœ“ ↔ 𝜁))    &   (π‘₯ = (𝑓 ∘f Β· 𝑔) β†’ (πœ“ ↔ 𝜎))    &   (π‘₯ = 𝐴 β†’ (πœ“ ↔ 𝜌))    &   ((πœ‘ ∧ 𝑓 ∈ 𝑅) β†’ πœ’)    &   ((πœ‘ ∧ 𝑓 ∈ 𝐼) β†’ πœƒ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑄)    β‡’   (πœ‘ β†’ 𝜌)
 
11.3.3  Additional definitions for (multivariate) polynomials
 
Syntaxcslv 21670 Select a subset of variables in a multivariate polynomial.
class selectVars
 
Syntaxcmhp 21671 Multivariate polynomials.
class mHomP
 
Syntaxcpsd 21672 Power series partial derivative function.
class mPSDer
 
Syntaxcai 21673 Algebraically independent.
class AlgInd
 
Definitiondf-selv 21674* Define the "variable selection" function. The function ((𝐼 selectVars 𝑅)β€˜π½) maps elements of (𝐼 mPoly 𝑅) bijectively onto (𝐽 mPoly ((𝐼 βˆ– 𝐽) mPoly 𝑅)) in the natural way, for example if 𝐼 = {π‘₯, 𝑦} and 𝐽 = {𝑦} it would map 1 + π‘₯ + 𝑦 + π‘₯𝑦 ∈ ({π‘₯, 𝑦} mPoly β„€) to (1 + π‘₯) + (1 + π‘₯)𝑦 ∈ ({𝑦} mPoly ({π‘₯} mPoly β„€)). This, for example, allows one to treat a multivariate polynomial as a univariate polynomial with coefficients in a polynomial ring with one less variable. (Contributed by Mario Carneiro, 21-Mar-2015.)
selectVars = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ↦ ⦋((𝑖 βˆ– 𝑗) mPoly π‘Ÿ) / π‘’β¦Œβ¦‹(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯))))))))
 
Definitiondf-mhp 21675* Define the subspaces of order- 𝑛 homogeneous polynomials. (Contributed by Mario Carneiro, 21-Mar-2015.)
mHomP = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (𝑛 ∈ β„•0 ↦ {𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ∣ (𝑓 supp (0gβ€˜π‘Ÿ)) βŠ† {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑛}}))
 
Definitiondf-psd 21676* Define the differentiation operation on multivariate polynomials. (Contributed by Mario Carneiro, 21-Mar-2015.)
mPSDer = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (π‘₯ ∈ 𝑖 ↦ (𝑓 ∈ (Baseβ€˜(𝑖 mPwSer π‘Ÿ)) ↦ (π‘˜ ∈ {β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ↦ (((π‘˜β€˜π‘₯) + 1)(.gβ€˜π‘Ÿ)(π‘“β€˜(π‘˜ ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = π‘₯, 1, 0)))))))))
 
Definitiondf-algind 21677* Define the predicate "the set 𝑣 is algebraically independent in the algebra 𝑀". A collection of vectors is algebraically independent if no nontrivial polynomial with elements from the subset evaluates to zero. (Contributed by Mario Carneiro, 21-Mar-2015.)
AlgInd = (𝑀 ∈ V, π‘˜ ∈ 𝒫 (Baseβ€˜π‘€) ↦ {𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ∣ Fun β—‘(𝑓 ∈ (Baseβ€˜(𝑣 mPoly (𝑀 β†Ύs π‘˜))) ↦ ((((𝑣 evalSub 𝑀)β€˜π‘˜)β€˜π‘“)β€˜( I β†Ύ 𝑣)))})
 
Theoremselvffval 21678* Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
(πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    β‡’   (πœ‘ β†’ (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Baseβ€˜(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 βˆ– 𝑗) mPoly 𝑅) / π‘’β¦Œβ¦‹(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝐼 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝐼 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝐼 βˆ– 𝑗) mVar 𝑅)β€˜π‘₯))))))))
 
Theoremselvfval 21679* Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
(πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    &   (πœ‘ β†’ 𝐽 βŠ† 𝐼)    β‡’   (πœ‘ β†’ ((𝐼 selectVars 𝑅)β€˜π½) = (𝑓 ∈ (Baseβ€˜(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 βˆ– 𝐽) mPoly 𝑅) / π‘’β¦Œβ¦‹(𝐽 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝐼 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝐼 ↦ if(π‘₯ ∈ 𝐽, ((𝐽 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝐼 βˆ– 𝐽) mVar 𝑅)β€˜π‘₯)))))))
 
Theoremselvval 21680* Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
𝑃 = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &   π‘ˆ = ((𝐼 βˆ– 𝐽) mPoly 𝑅)    &   π‘‡ = (𝐽 mPoly π‘ˆ)    &   πΆ = (algScβ€˜π‘‡)    &   π· = (𝐢 ∘ (algScβ€˜π‘ˆ))    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    &   (πœ‘ β†’ 𝐽 βŠ† 𝐼)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    β‡’   (πœ‘ β†’ (((𝐼 selectVars 𝑅)β€˜π½)β€˜πΉ) = ((((𝐼 evalSub 𝑇)β€˜ran 𝐷)β€˜(𝐷 ∘ 𝐹))β€˜(π‘₯ ∈ 𝐼 ↦ if(π‘₯ ∈ 𝐽, ((𝐽 mVar π‘ˆ)β€˜π‘₯), (πΆβ€˜(((𝐼 βˆ– 𝐽) mVar 𝑅)β€˜π‘₯))))))
 
Theoremmhpfval 21681* Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    0 = (0gβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    β‡’   (πœ‘ β†’ 𝐻 = (𝑛 ∈ β„•0 ↦ {𝑓 ∈ 𝐡 ∣ (𝑓 supp 0 ) βŠ† {𝑔 ∈ 𝐷 ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑛}}))
 
Theoremmhpval 21682* Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    0 = (0gβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    β‡’   (πœ‘ β†’ (π»β€˜π‘) = {𝑓 ∈ 𝐡 ∣ (𝑓 supp 0 ) βŠ† {𝑔 ∈ 𝐷 ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}})
 
Theoremismhp 21683* Property of being a homogeneous polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    0 = (0gβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    β‡’   (πœ‘ β†’ (𝑋 ∈ (π»β€˜π‘) ↔ (𝑋 ∈ 𝐡 ∧ (𝑋 supp 0 ) βŠ† {𝑔 ∈ 𝐷 ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁})))
 
Theoremismhp2 21684* Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    0 = (0gβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ (𝑋 supp 0 ) βŠ† {𝑔 ∈ 𝐷 ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁})    β‡’   (πœ‘ β†’ 𝑋 ∈ (π»β€˜π‘))
 
Theoremismhp3 21685* A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &    0 = (0gβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 ∈ (π»β€˜π‘) ↔ βˆ€π‘‘ ∈ 𝐷 ((π‘‹β€˜π‘‘) β‰  0 β†’ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑑) = 𝑁)))
 
Theoremmhpmpl 21686 A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π΅ = (Baseβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ (π»β€˜π‘))    β‡’   (πœ‘ β†’ 𝑋 ∈ 𝐡)
 
Theoremmhpdeg 21687* All nonzero terms of a homogeneous polynomial have degree 𝑁. (Contributed by Steven Nguyen, 25-Aug-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &    0 = (0gβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ π‘Š)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ (π»β€˜π‘))    β‡’   (πœ‘ β†’ (𝑋 supp 0 ) βŠ† {𝑔 ∈ 𝐷 ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁})
 
Theoremmhp0cl 21688* The zero polynomial is homogeneous. Under df-mhp 21675, it has any (nonnegative integer) degree which loosely corresponds to the value "undefined". The values -∞ and 0 are also used in Metamath (by df-mdeg 25569 and df-dgr 25704 respectively) and the literature: https://math.stackexchange.com/a/1796314/593843 25704. (Contributed by SN, 12-Sep-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &    0 = (0gβ€˜π‘…)    &   π· = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    β‡’   (πœ‘ β†’ (𝐷 Γ— { 0 }) ∈ (π»β€˜π‘))
 
Theoremmhpsclcl 21689 A scalar (or constant) polynomial has degree 0. Compare deg1scl 25630. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 21675 the zero polynomial can be any degree (see mhp0cl 21688) so there is no exception. (Contributed by SN, 25-May-2024.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π΄ = (algScβ€˜π‘ƒ)    &   πΎ = (Baseβ€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝐢 ∈ 𝐾)    β‡’   (πœ‘ β†’ (π΄β€˜πΆ) ∈ (π»β€˜0))
 
Theoremmhpvarcl 21690 A power series variable is a polynomial of degree 1. (Contributed by SN, 25-May-2024.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘‰ = (𝐼 mVar 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ π‘Š)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐼)    β‡’   (πœ‘ β†’ (π‘‰β€˜π‘‹) ∈ (π»β€˜1))
 
Theoremmhpmulcl 21691 A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 25596 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘Œ = (𝐼 mPoly 𝑅)    &    Β· = (.rβ€˜π‘Œ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑀 ∈ β„•0)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑃 ∈ (π»β€˜π‘€))    &   (πœ‘ β†’ 𝑄 ∈ (π»β€˜π‘))    β‡’   (πœ‘ β†’ (𝑃 Β· 𝑄) ∈ (π»β€˜(𝑀 + 𝑁)))
 
Theoremmhppwdeg 21692 Degree of a homogeneous polynomial raised to a power. General version of deg1pw 25637. (Contributed by SN, 26-Jul-2024.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π‘‡ = (mulGrpβ€˜π‘ƒ)    &    ↑ = (.gβ€˜π‘‡)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑀 ∈ β„•0)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ (π»β€˜π‘€))    β‡’   (πœ‘ β†’ (𝑁 ↑ 𝑋) ∈ (π»β€˜(𝑀 Β· 𝑁)))
 
Theoremmhpaddcl 21693 Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &    + = (+gβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ (π»β€˜π‘))    &   (πœ‘ β†’ π‘Œ ∈ (π»β€˜π‘))    β‡’   (πœ‘ β†’ (𝑋 + π‘Œ) ∈ (π»β€˜π‘))
 
Theoremmhpinvcl 21694 Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   π‘€ = (invgβ€˜π‘ƒ)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ (π»β€˜π‘))    β‡’   (πœ‘ β†’ (π‘€β€˜π‘‹) ∈ (π»β€˜π‘))
 
Theoremmhpsubg 21695 Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Grp)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    β‡’   (πœ‘ β†’ (π»β€˜π‘) ∈ (SubGrpβ€˜π‘ƒ))
 
Theoremmhpvscacl 21696 Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &    Β· = ( ·𝑠 β€˜π‘ƒ)    &   πΎ = (Baseβ€˜π‘…)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ 𝐹 ∈ (π»β€˜π‘))    β‡’   (πœ‘ β†’ (𝑋 Β· 𝐹) ∈ (π»β€˜π‘))
 
Theoremmhplss 21697 Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023.)
𝐻 = (𝐼 mHomP 𝑅)    &   π‘ƒ = (𝐼 mPoly 𝑅)    &   (πœ‘ β†’ 𝐼 ∈ 𝑉)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    β‡’   (πœ‘ β†’ (π»β€˜π‘) ∈ (LSubSpβ€˜π‘ƒ))
 
11.3.4  Univariate polynomials

According to Wikipedia ("Polynomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Polynomial) "A polynomial in one indeterminate is called a univariate polynomial, a polynomial in more than one indeterminate is called a multivariate polynomial." In this sense univariate polynomials are defined as multivariate polynomials restricted to one indeterminate/polynomial variable in the following, see ply1bascl2 21727.

According to the definition in Wikipedia "a polynomial can either be zero or can be written as the sum of a finite number of nonzero terms. Each term consists of the product of a number - called the coefficient of the term - and a finite number of indeterminates, raised to nonnegative integer powers.". By this, a term of a univariate polynomial (often also called "polynomial term") is the product of a coefficient (usually a member of the underlying ring) and the variable, raised to a nonnegative integer power.

A (univariate) polynomial which has only one term is called (univariate) monomial - therefore, the notions "term" and "monomial" are often used synonymously, see also the definition in [Lang] p. 102. Sometimes, however, a monomial is defined as power product, "a product of powers of variables with nonnegative integer exponents", see Wikipedia ("Monomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Mononomial 21727). In [Lang] p. 101, such terms are called "primitive monomials". To avoid any ambiguity, the notion "primitive monomial" is used for such power products ("x^i") in the following, whereas the synonym for "term" ("ai x^i") will be "scaled monomial".

 
Syntaxcps1 21698 Univariate power series.
class PwSer1
 
Syntaxcv1 21699 The base variable of a univariate power series.
class var1
 
Syntaxcpl1 21700 Univariate polynomials.
class Poly1
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47842
  Copyright terms: Public domain < Previous  Next >