|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-antisymrel | Structured version Visualization version GIF version | ||
| Description: Define the antisymmetric relation predicate. (Read: 𝑅 is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.) | 
| Ref | Expression | 
|---|---|
| df-antisymrel | ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | wantisymrel 38220 | . 2 wff AntisymRel 𝑅 | 
| 3 | 1 | ccnv 5683 | . . . . 5 class ◡𝑅 | 
| 4 | 1, 3 | cin 3949 | . . . 4 class (𝑅 ∩ ◡𝑅) | 
| 5 | 4 | wcnvrefrel 38192 | . . 3 wff CnvRefRel (𝑅 ∩ ◡𝑅) | 
| 6 | 1 | wrel 5689 | . . 3 wff Rel 𝑅 | 
| 7 | 5, 6 | wa 395 | . 2 wff ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅) | 
| 8 | 2, 7 | wb 206 | 1 wff ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: dfantisymrel4 38763 dfantisymrel5 38764 | 
| Copyright terms: Public domain | W3C validator |