| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-antisymrel | Structured version Visualization version GIF version | ||
| Description: Define the antisymmetric relation predicate. (Read: 𝑅 is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.) |
| Ref | Expression |
|---|---|
| df-antisymrel | ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | wantisymrel 38203 | . 2 wff AntisymRel 𝑅 |
| 3 | 1 | ccnv 5645 | . . . . 5 class ◡𝑅 |
| 4 | 1, 3 | cin 3921 | . . . 4 class (𝑅 ∩ ◡𝑅) |
| 5 | 4 | wcnvrefrel 38175 | . . 3 wff CnvRefRel (𝑅 ∩ ◡𝑅) |
| 6 | 1 | wrel 5651 | . . 3 wff Rel 𝑅 |
| 7 | 5, 6 | wa 395 | . 2 wff ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅) |
| 8 | 2, 7 | wb 206 | 1 wff ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfantisymrel4 38746 dfantisymrel5 38747 |
| Copyright terms: Public domain | W3C validator |