Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-antisymrel | Structured version Visualization version GIF version |
Description: Define the antisymmetric relation predicate. (Read: 𝑅 is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.) |
Ref | Expression |
---|---|
df-antisymrel | ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | 1 | wantisymrel 36447 | . 2 wff AntisymRel 𝑅 |
3 | 1 | ccnv 5606 | . . . . 5 class ◡𝑅 |
4 | 1, 3 | cin 3895 | . . . 4 class (𝑅 ∩ ◡𝑅) |
5 | 4 | wcnvrefrel 36419 | . . 3 wff CnvRefRel (𝑅 ∩ ◡𝑅) |
6 | 1 | wrel 5612 | . . 3 wff Rel 𝑅 |
7 | 5, 6 | wa 396 | . 2 wff ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅) |
8 | 2, 7 | wb 205 | 1 wff ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfantisymrel4 37000 dfantisymrel5 37001 |
Copyright terms: Public domain | W3C validator |