Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-antisymrel Structured version   Visualization version   GIF version

Definition df-antisymrel 36974
Description: Define the antisymmetric relation predicate. (Read: 𝑅 is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.)
Assertion
Ref Expression
df-antisymrel ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅))

Detailed syntax breakdown of Definition df-antisymrel
StepHypRef Expression
1 cR . . 3 class 𝑅
21wantisymrel 36418 . 2 wff AntisymRel 𝑅
31ccnv 5599 . . . . 5 class 𝑅
41, 3cin 3891 . . . 4 class (𝑅𝑅)
54wcnvrefrel 36390 . . 3 wff CnvRefRel (𝑅𝑅)
61wrel 5605 . . 3 wff Rel 𝑅
75, 6wa 397 . 2 wff ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅)
82, 7wb 205 1 wff ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅))
Colors of variables: wff setvar class
This definition is referenced by:  dfantisymrel4  36975  dfantisymrel5  36976
  Copyright terms: Public domain W3C validator