| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjsuc | Structured version Visualization version GIF version | ||
| Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| disjsuc | ⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsuc2 38422 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | |
| 2 | df-suc 6312 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 2 | reseq2i 5925 | . . . . 5 ⊢ (◡ E ↾ suc 𝐴) = (◡ E ↾ (𝐴 ∪ {𝐴})) |
| 4 | 3 | xrneq2i 38412 | . . . 4 ⊢ (𝑅 ⋉ (◡ E ↾ suc 𝐴)) = (𝑅 ⋉ (◡ E ↾ (𝐴 ∪ {𝐴}))) |
| 5 | 4 | disjeqi 38772 | . . 3 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ Disj (𝑅 ⋉ (◡ E ↾ (𝐴 ∪ {𝐴})))) |
| 6 | disjxrnres5 38784 | . . 3 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ (𝐴 ∪ {𝐴}))) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅)) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅)) |
| 8 | disjxrnres5 38784 | . . 3 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅)) | |
| 9 | 8 | anbi1i 624 | . 2 ⊢ (( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |
| 10 | 1, 7, 9 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cun 3900 ∩ cin 3901 ∅c0 4283 {csn 4576 E cep 5515 ◡ccnv 5615 ↾ cres 5618 suc csuc 6308 [cec 8620 ⋉ cxrn 38213 Disj wdisjALTV 38248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-ec 8624 df-xrn 38398 df-coss 38447 df-cnvrefrel 38563 df-funALTV 38719 df-disjALTV 38742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |