Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjsuc Structured version   Visualization version   GIF version

Theorem disjsuc 38751
Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjsuc (𝐴𝑉 → ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑅   𝑢,𝑉

Proof of Theorem disjsuc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 disjsuc2 38377 . 2 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
2 df-suc 6338 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
32reseq2i 5947 . . . . 5 ( E ↾ suc 𝐴) = ( E ↾ (𝐴 ∪ {𝐴}))
43xrneq2i 38367 . . . 4 (𝑅 ⋉ ( E ↾ suc 𝐴)) = (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴})))
54disjeqi 38727 . . 3 ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ Disj (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴}))))
6 disjxrnres5 38739 . . 3 ( Disj (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴}))) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
75, 6bitri 275 . 2 ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
8 disjxrnres5 38739 . . 3 ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
98anbi1i 624 . 2 (( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
101, 7, 93bitr4g 314 1 (𝐴𝑉 → ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cun 3912  cin 3913  c0 4296  {csn 4589   E cep 5537  ccnv 5637  cres 5640  suc csuc 6334  [cec 8669  cxrn 38168   Disj wdisjALTV 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-ec 8673  df-xrn 38353  df-coss 38402  df-cnvrefrel 38518  df-funALTV 38674  df-disjALTV 38697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator