![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjsuc | Structured version Visualization version GIF version |
Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.) |
Ref | Expression |
---|---|
disjsuc | ⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsuc2 37261 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | |
2 | df-suc 6371 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 2 | reseq2i 5979 | . . . . 5 ⊢ (◡ E ↾ suc 𝐴) = (◡ E ↾ (𝐴 ∪ {𝐴})) |
4 | 3 | xrneq2i 37251 | . . . 4 ⊢ (𝑅 ⋉ (◡ E ↾ suc 𝐴)) = (𝑅 ⋉ (◡ E ↾ (𝐴 ∪ {𝐴}))) |
5 | 4 | disjeqi 37605 | . . 3 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ Disj (𝑅 ⋉ (◡ E ↾ (𝐴 ∪ {𝐴})))) |
6 | disjxrnres5 37617 | . . 3 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ (𝐴 ∪ {𝐴}))) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅)) | |
7 | 5, 6 | bitri 275 | . 2 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅)) |
8 | disjxrnres5 37617 | . . 3 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅)) | |
9 | 8 | anbi1i 625 | . 2 ⊢ (( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |
10 | 1, 7, 9 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∪ cun 3947 ∩ cin 3948 ∅c0 4323 {csn 4629 E cep 5580 ◡ccnv 5676 ↾ cres 5679 suc csuc 6367 [cec 8701 ⋉ cxrn 37042 Disj wdisjALTV 37077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-reg 9587 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-1st 7975 df-2nd 7976 df-ec 8705 df-xrn 37241 df-coss 37281 df-cnvrefrel 37397 df-funALTV 37552 df-disjALTV 37575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |