Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjsuc | Structured version Visualization version GIF version |
Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.) |
Ref | Expression |
---|---|
disjsuc | ⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsuc2 36605 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | |
2 | df-suc 6287 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 2 | reseq2i 5900 | . . . . 5 ⊢ (◡ E ↾ suc 𝐴) = (◡ E ↾ (𝐴 ∪ {𝐴})) |
4 | 3 | xrneq2i 36595 | . . . 4 ⊢ (𝑅 ⋉ (◡ E ↾ suc 𝐴)) = (𝑅 ⋉ (◡ E ↾ (𝐴 ∪ {𝐴}))) |
5 | 4 | disjeqi 36949 | . . 3 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ Disj (𝑅 ⋉ (◡ E ↾ (𝐴 ∪ {𝐴})))) |
6 | disjxrnres5 36961 | . . 3 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ (𝐴 ∪ {𝐴}))) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅)) | |
7 | 5, 6 | bitri 275 | . 2 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅)) |
8 | disjxrnres5 36961 | . . 3 ⊢ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅)) | |
9 | 8 | anbi1i 625 | . 2 ⊢ (( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |
10 | 1, 7, 9 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 845 = wceq 1539 ∈ wcel 2104 ∀wral 3061 ∪ cun 3890 ∩ cin 3891 ∅c0 4262 {csn 4565 E cep 5505 ◡ccnv 5599 ↾ cres 5602 suc csuc 6283 [cec 8527 ⋉ cxrn 36380 Disj wdisjALTV 36415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-reg 9399 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3331 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-eprel 5506 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fo 6464 df-fv 6466 df-1st 7863 df-2nd 7864 df-ec 8531 df-xrn 36585 df-coss 36625 df-cnvrefrel 36741 df-funALTV 36896 df-disjALTV 36919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |