Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjsuc Structured version   Visualization version   GIF version

Theorem disjsuc 38263
Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjsuc (𝐴𝑉 → ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑅   𝑢,𝑉

Proof of Theorem disjsuc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 disjsuc2 37895 . 2 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
2 df-suc 6380 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
32reseq2i 5986 . . . . 5 ( E ↾ suc 𝐴) = ( E ↾ (𝐴 ∪ {𝐴}))
43xrneq2i 37885 . . . 4 (𝑅 ⋉ ( E ↾ suc 𝐴)) = (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴})))
54disjeqi 38239 . . 3 ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ Disj (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴}))))
6 disjxrnres5 38251 . . 3 ( Disj (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴}))) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
75, 6bitri 274 . 2 ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
8 disjxrnres5 38251 . . 3 ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
98anbi1i 622 . 2 (( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
101, 7, 93bitr4g 313 1 (𝐴𝑉 → ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wral 3058  cun 3947  cin 3948  c0 4326  {csn 4632   E cep 5585  ccnv 5681  cres 5684  suc csuc 6376  [cec 8729  cxrn 37680   Disj wdisjALTV 37715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746  ax-reg 9623
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-eprel 5586  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fo 6559  df-fv 6561  df-1st 7999  df-2nd 8000  df-ec 8733  df-xrn 37875  df-coss 37915  df-cnvrefrel 38031  df-funALTV 38186  df-disjALTV 38209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator