Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjsuc Structured version   Visualization version   GIF version

Theorem disjsuc 37629
Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjsuc (𝐴𝑉 → ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑅   𝑢,𝑉

Proof of Theorem disjsuc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 disjsuc2 37261 . 2 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
2 df-suc 6371 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
32reseq2i 5979 . . . . 5 ( E ↾ suc 𝐴) = ( E ↾ (𝐴 ∪ {𝐴}))
43xrneq2i 37251 . . . 4 (𝑅 ⋉ ( E ↾ suc 𝐴)) = (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴})))
54disjeqi 37605 . . 3 ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ Disj (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴}))))
6 disjxrnres5 37617 . . 3 ( Disj (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴}))) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
75, 6bitri 275 . 2 ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
8 disjxrnres5 37617 . . 3 ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
98anbi1i 625 . 2 (( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
101, 7, 93bitr4g 314 1 (𝐴𝑉 → ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3062  cun 3947  cin 3948  c0 4323  {csn 4629   E cep 5580  ccnv 5676  cres 5679  suc csuc 6367  [cec 8701  cxrn 37042   Disj wdisjALTV 37077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725  ax-reg 9587
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-eprel 5581  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-1st 7975  df-2nd 7976  df-ec 8705  df-xrn 37241  df-coss 37281  df-cnvrefrel 37397  df-funALTV 37552  df-disjALTV 37575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator