Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjsuc Structured version   Visualization version   GIF version

Theorem disjsuc 38796
Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjsuc (𝐴𝑉 → ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑅   𝑢,𝑉

Proof of Theorem disjsuc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 disjsuc2 38422 . 2 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
2 df-suc 6312 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
32reseq2i 5925 . . . . 5 ( E ↾ suc 𝐴) = ( E ↾ (𝐴 ∪ {𝐴}))
43xrneq2i 38412 . . . 4 (𝑅 ⋉ ( E ↾ suc 𝐴)) = (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴})))
54disjeqi 38772 . . 3 ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ Disj (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴}))))
6 disjxrnres5 38784 . . 3 ( Disj (𝑅 ⋉ ( E ↾ (𝐴 ∪ {𝐴}))) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
75, 6bitri 275 . 2 ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
8 disjxrnres5 38784 . . 3 ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅))
98anbi1i 624 . 2 (( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
101, 7, 93bitr4g 314 1 (𝐴𝑉 → ( Disj (𝑅 ⋉ ( E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  cun 3900  cin 3901  c0 4283  {csn 4576   E cep 5515  ccnv 5615  cres 5618  suc csuc 6308  [cec 8620  cxrn 38213   Disj wdisjALTV 38248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-ec 8624  df-xrn 38398  df-coss 38447  df-cnvrefrel 38563  df-funALTV 38719  df-disjALTV 38742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator