![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfantisymrel4 | Structured version Visualization version GIF version |
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
Ref | Expression |
---|---|
dfantisymrel4 | ⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-antisymrel 38120 | . 2 ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | |
2 | relcnv 6093 | . . . 4 ⊢ Rel ◡𝑅 | |
3 | relin2 5803 | . . . 4 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel (𝑅 ∩ ◡𝑅) |
5 | dfcnvrefrel4 37892 | . . 3 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel (𝑅 ∩ ◡𝑅))) | |
6 | 4, 5 | mpbiran2 707 | . 2 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ (𝑅 ∩ ◡𝑅) ⊆ I ) |
7 | 1, 6 | bianbi 37585 | 1 ⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∩ cin 3939 ⊆ wss 3940 I cid 5563 ◡ccnv 5665 Rel wrel 5671 CnvRefRel wcnvrefrel 37542 AntisymRel wantisymrel 37570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-cnvrefrel 37887 df-antisymrel 38120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |