| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfantisymrel4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| Ref | Expression |
|---|---|
| dfantisymrel4 | ⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-antisymrel 38879 | . 2 ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | |
| 2 | relcnv 6057 | . . . 4 ⊢ Rel ◡𝑅 | |
| 3 | relin2 5757 | . . . 4 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel (𝑅 ∩ ◡𝑅) |
| 5 | dfcnvrefrel4 38645 | . . 3 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel (𝑅 ∩ ◡𝑅))) | |
| 6 | 4, 5 | mpbiran2 710 | . 2 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ (𝑅 ∩ ◡𝑅) ⊆ I ) |
| 7 | 1, 6 | bianbi 627 | 1 ⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∩ cin 3897 ⊆ wss 3898 I cid 5513 ◡ccnv 5618 Rel wrel 5624 CnvRefRel wcnvrefrel 38252 AntisymRel wantisymrel 38280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-cnvrefrel 38640 df-antisymrel 38879 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |