| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfantisymrel4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| Ref | Expression |
|---|---|
| dfantisymrel4 | ⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-antisymrel 38804 | . 2 ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | |
| 2 | relcnv 6053 | . . . 4 ⊢ Rel ◡𝑅 | |
| 3 | relin2 5753 | . . . 4 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel (𝑅 ∩ ◡𝑅) |
| 5 | dfcnvrefrel4 38575 | . . 3 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel (𝑅 ∩ ◡𝑅))) | |
| 6 | 4, 5 | mpbiran2 710 | . 2 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ (𝑅 ∩ ◡𝑅) ⊆ I ) |
| 7 | 1, 6 | bianbi 627 | 1 ⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∩ cin 3901 ⊆ wss 3902 I cid 5510 ◡ccnv 5615 Rel wrel 5621 CnvRefRel wcnvrefrel 38230 AntisymRel wantisymrel 38258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-cnvrefrel 38570 df-antisymrel 38804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |