Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfantisymrel4 Structured version   Visualization version   GIF version

Theorem dfantisymrel4 38753
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.)
Assertion
Ref Expression
dfantisymrel4 ( AntisymRel 𝑅 ↔ ((𝑅𝑅) ⊆ I ∧ Rel 𝑅))

Proof of Theorem dfantisymrel4
StepHypRef Expression
1 df-antisymrel 38752 . 2 ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅))
2 relcnv 6075 . . . 4 Rel 𝑅
3 relin2 5776 . . . 4 (Rel 𝑅 → Rel (𝑅𝑅))
42, 3ax-mp 5 . . 3 Rel (𝑅𝑅)
5 dfcnvrefrel4 38523 . . 3 ( CnvRefRel (𝑅𝑅) ↔ ((𝑅𝑅) ⊆ I ∧ Rel (𝑅𝑅)))
64, 5mpbiran2 710 . 2 ( CnvRefRel (𝑅𝑅) ↔ (𝑅𝑅) ⊆ I )
71, 6bianbi 627 1 ( AntisymRel 𝑅 ↔ ((𝑅𝑅) ⊆ I ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  cin 3913  wss 3914   I cid 5532  ccnv 5637  Rel wrel 5643   CnvRefRel wcnvrefrel 38178   AntisymRel wantisymrel 38206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-cnvrefrel 38518  df-antisymrel 38752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator