| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfantisymrel5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| Ref | Expression |
|---|---|
| dfantisymrel5 | ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-antisymrel 38759 | . 2 ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | |
| 2 | relcnv 6078 | . . . . 5 ⊢ Rel ◡𝑅 | |
| 3 | relin2 5779 | . . . . 5 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel (𝑅 ∩ ◡𝑅) |
| 5 | dfcnvrefrel5 38531 | . . . 4 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ∧ Rel (𝑅 ∩ ◡𝑅))) | |
| 6 | 4, 5 | mpbiran2 710 | . . 3 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦)) |
| 7 | brcnvin 38359 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | |
| 8 | 7 | el2v 3457 | . . . . 5 ⊢ (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
| 9 | 8 | imbi1i 349 | . . . 4 ⊢ ((𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| 10 | 9 | 2albii 1820 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| 11 | 6, 10 | bitri 275 | . 2 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| 12 | 1, 11 | bianbi 627 | 1 ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 Vcvv 3450 ∩ cin 3916 class class class wbr 5110 ◡ccnv 5640 Rel wrel 5646 CnvRefRel wcnvrefrel 38185 AntisymRel wantisymrel 38213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-cnvrefrel 38525 df-antisymrel 38759 |
| This theorem is referenced by: antisymrelres 38762 antisymrelressn 38763 |
| Copyright terms: Public domain | W3C validator |