Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfantisymrel5 Structured version   Visualization version   GIF version

Theorem dfantisymrel5 38761
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.)
Assertion
Ref Expression
dfantisymrel5 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfantisymrel5
StepHypRef Expression
1 df-antisymrel 38759 . 2 ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅))
2 relcnv 6078 . . . . 5 Rel 𝑅
3 relin2 5779 . . . . 5 (Rel 𝑅 → Rel (𝑅𝑅))
42, 3ax-mp 5 . . . 4 Rel (𝑅𝑅)
5 dfcnvrefrel5 38531 . . . 4 ( CnvRefRel (𝑅𝑅) ↔ (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ∧ Rel (𝑅𝑅)))
64, 5mpbiran2 710 . . 3 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦))
7 brcnvin 38359 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
87el2v 3457 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
98imbi1i 349 . . . 4 ((𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
1092albii 1820 . . 3 (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
116, 10bitri 275 . 2 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
121, 11bianbi 627 1 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  Vcvv 3450  cin 3916   class class class wbr 5110  ccnv 5640  Rel wrel 5646   CnvRefRel wcnvrefrel 38185   AntisymRel wantisymrel 38213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-cnvrefrel 38525  df-antisymrel 38759
This theorem is referenced by:  antisymrelres  38762  antisymrelressn  38763
  Copyright terms: Public domain W3C validator