Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfantisymrel5 Structured version   Visualization version   GIF version

Theorem dfantisymrel5 38881
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.)
Assertion
Ref Expression
dfantisymrel5 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfantisymrel5
StepHypRef Expression
1 df-antisymrel 38879 . 2 ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅))
2 relcnv 6057 . . . . 5 Rel 𝑅
3 relin2 5757 . . . . 5 (Rel 𝑅 → Rel (𝑅𝑅))
42, 3ax-mp 5 . . . 4 Rel (𝑅𝑅)
5 dfcnvrefrel5 38646 . . . 4 ( CnvRefRel (𝑅𝑅) ↔ (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ∧ Rel (𝑅𝑅)))
64, 5mpbiran2 710 . . 3 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦))
7 brcnvin 38423 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
87el2v 3444 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
98imbi1i 349 . . . 4 ((𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
1092albii 1821 . . 3 (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
116, 10bitri 275 . 2 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
121, 11bianbi 627 1 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  Vcvv 3437  cin 3897   class class class wbr 5093  ccnv 5618  Rel wrel 5624   CnvRefRel wcnvrefrel 38252   AntisymRel wantisymrel 38280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-cnvrefrel 38640  df-antisymrel 38879
This theorem is referenced by:  antisymrelres  38882  antisymrelressn  38883
  Copyright terms: Public domain W3C validator