![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfantisymrel5 | Structured version Visualization version GIF version |
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
Ref | Expression |
---|---|
dfantisymrel5 | ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-antisymrel 38120 | . 2 ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | |
2 | relcnv 6093 | . . . . 5 ⊢ Rel ◡𝑅 | |
3 | relin2 5803 | . . . . 5 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel (𝑅 ∩ ◡𝑅) |
5 | dfcnvrefrel5 37893 | . . . 4 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ∧ Rel (𝑅 ∩ ◡𝑅))) | |
6 | 4, 5 | mpbiran2 707 | . . 3 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦)) |
7 | brcnvin 37730 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | |
8 | 7 | el2v 3474 | . . . . 5 ⊢ (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
9 | 8 | imbi1i 349 | . . . 4 ⊢ ((𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
10 | 9 | 2albii 1814 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
11 | 6, 10 | bitri 275 | . 2 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
12 | 1, 11 | bianbi 37585 | 1 ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 Vcvv 3466 ∩ cin 3939 class class class wbr 5138 ◡ccnv 5665 Rel wrel 5671 CnvRefRel wcnvrefrel 37542 AntisymRel wantisymrel 37570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-cnvrefrel 37887 df-antisymrel 38120 |
This theorem is referenced by: antisymrelres 38123 antisymrelressn 38124 |
Copyright terms: Public domain | W3C validator |