Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfantisymrel5 | Structured version Visualization version GIF version |
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
Ref | Expression |
---|---|
dfantisymrel5 | ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-antisymrel 36974 | . 2 ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | |
2 | relcnv 6022 | . . . . 5 ⊢ Rel ◡𝑅 | |
3 | relin2 5735 | . . . . 5 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel (𝑅 ∩ ◡𝑅) |
5 | dfcnvrefrel5 36747 | . . . 4 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ∧ Rel (𝑅 ∩ ◡𝑅))) | |
6 | 4, 5 | mpbiran2 708 | . . 3 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦)) |
7 | brcnvin 36584 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | |
8 | 7 | el2v 3445 | . . . . 5 ⊢ (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
9 | 8 | imbi1i 350 | . . . 4 ⊢ ((𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
10 | 9 | 2albii 1820 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
11 | 6, 10 | bitri 275 | . 2 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
12 | 1, 11 | bianbi 36434 | 1 ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 = wceq 1539 Vcvv 3437 ∩ cin 3891 class class class wbr 5081 ◡ccnv 5599 Rel wrel 5605 CnvRefRel wcnvrefrel 36390 AntisymRel wantisymrel 36418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-cnvrefrel 36741 df-antisymrel 36974 |
This theorem is referenced by: antisymrelres 36977 antisymrelressn 36978 |
Copyright terms: Public domain | W3C validator |