Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfantisymrel5 Structured version   Visualization version   GIF version

Theorem dfantisymrel5 38806
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.)
Assertion
Ref Expression
dfantisymrel5 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfantisymrel5
StepHypRef Expression
1 df-antisymrel 38804 . 2 ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅))
2 relcnv 6053 . . . . 5 Rel 𝑅
3 relin2 5753 . . . . 5 (Rel 𝑅 → Rel (𝑅𝑅))
42, 3ax-mp 5 . . . 4 Rel (𝑅𝑅)
5 dfcnvrefrel5 38576 . . . 4 ( CnvRefRel (𝑅𝑅) ↔ (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ∧ Rel (𝑅𝑅)))
64, 5mpbiran2 710 . . 3 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦))
7 brcnvin 38404 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
87el2v 3443 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
98imbi1i 349 . . . 4 ((𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
1092albii 1821 . . 3 (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
116, 10bitri 275 . 2 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
121, 11bianbi 627 1 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  Vcvv 3436  cin 3901   class class class wbr 5091  ccnv 5615  Rel wrel 5621   CnvRefRel wcnvrefrel 38230   AntisymRel wantisymrel 38258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-cnvrefrel 38570  df-antisymrel 38804
This theorem is referenced by:  antisymrelres  38807  antisymrelressn  38808
  Copyright terms: Public domain W3C validator