Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfantisymrel5 Structured version   Visualization version   GIF version

Theorem dfantisymrel5 38122
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.)
Assertion
Ref Expression
dfantisymrel5 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfantisymrel5
StepHypRef Expression
1 df-antisymrel 38120 . 2 ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅))
2 relcnv 6093 . . . . 5 Rel 𝑅
3 relin2 5803 . . . . 5 (Rel 𝑅 → Rel (𝑅𝑅))
42, 3ax-mp 5 . . . 4 Rel (𝑅𝑅)
5 dfcnvrefrel5 37893 . . . 4 ( CnvRefRel (𝑅𝑅) ↔ (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ∧ Rel (𝑅𝑅)))
64, 5mpbiran2 707 . . 3 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦))
7 brcnvin 37730 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
87el2v 3474 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
98imbi1i 349 . . . 4 ((𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
1092albii 1814 . . 3 (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
116, 10bitri 275 . 2 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
121, 11bianbi 37585 1 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  Vcvv 3466  cin 3939   class class class wbr 5138  ccnv 5665  Rel wrel 5671   CnvRefRel wcnvrefrel 37542   AntisymRel wantisymrel 37570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-cnvrefrel 37887  df-antisymrel 38120
This theorem is referenced by:  antisymrelres  38123  antisymrelressn  38124
  Copyright terms: Public domain W3C validator