![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfantisymrel5 | Structured version Visualization version GIF version |
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
Ref | Expression |
---|---|
dfantisymrel5 | ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-antisymrel 38742 | . 2 ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | |
2 | relcnv 6125 | . . . . 5 ⊢ Rel ◡𝑅 | |
3 | relin2 5826 | . . . . 5 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel (𝑅 ∩ ◡𝑅) |
5 | dfcnvrefrel5 38515 | . . . 4 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ∧ Rel (𝑅 ∩ ◡𝑅))) | |
6 | 4, 5 | mpbiran2 710 | . . 3 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦)) |
7 | brcnvin 38352 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | |
8 | 7 | el2v 3485 | . . . . 5 ⊢ (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
9 | 8 | imbi1i 349 | . . . 4 ⊢ ((𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
10 | 9 | 2albii 1817 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
11 | 6, 10 | bitri 275 | . 2 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
12 | 1, 11 | bianbi 627 | 1 ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 Vcvv 3478 ∩ cin 3962 class class class wbr 5148 ◡ccnv 5688 Rel wrel 5694 CnvRefRel wcnvrefrel 38171 AntisymRel wantisymrel 38199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-cnvrefrel 38509 df-antisymrel 38742 |
This theorem is referenced by: antisymrelres 38745 antisymrelressn 38746 |
Copyright terms: Public domain | W3C validator |