Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfantisymrel5 Structured version   Visualization version   GIF version

Theorem dfantisymrel5 38780
Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.)
Assertion
Ref Expression
dfantisymrel5 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfantisymrel5
StepHypRef Expression
1 df-antisymrel 38778 . 2 ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅))
2 relcnv 6091 . . . . 5 Rel 𝑅
3 relin2 5792 . . . . 5 (Rel 𝑅 → Rel (𝑅𝑅))
42, 3ax-mp 5 . . . 4 Rel (𝑅𝑅)
5 dfcnvrefrel5 38551 . . . 4 ( CnvRefRel (𝑅𝑅) ↔ (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ∧ Rel (𝑅𝑅)))
64, 5mpbiran2 710 . . 3 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦))
7 brcnvin 38388 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
87el2v 3466 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
98imbi1i 349 . . . 4 ((𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
1092albii 1820 . . 3 (∀𝑥𝑦(𝑥(𝑅𝑅)𝑦𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
116, 10bitri 275 . 2 ( CnvRefRel (𝑅𝑅) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
121, 11bianbi 627 1 ( AntisymRel 𝑅 ↔ (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  Vcvv 3459  cin 3925   class class class wbr 5119  ccnv 5653  Rel wrel 5659   CnvRefRel wcnvrefrel 38208   AntisymRel wantisymrel 38236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-cnvrefrel 38545  df-antisymrel 38778
This theorem is referenced by:  antisymrelres  38781  antisymrelressn  38782
  Copyright terms: Public domain W3C validator