| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfantisymrel5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| Ref | Expression |
|---|---|
| dfantisymrel5 | ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-antisymrel 38761 | . 2 ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | |
| 2 | relcnv 6122 | . . . . 5 ⊢ Rel ◡𝑅 | |
| 3 | relin2 5823 | . . . . 5 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel (𝑅 ∩ ◡𝑅) |
| 5 | dfcnvrefrel5 38534 | . . . 4 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ∧ Rel (𝑅 ∩ ◡𝑅))) | |
| 6 | 4, 5 | mpbiran2 710 | . . 3 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦)) |
| 7 | brcnvin 38371 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | |
| 8 | 7 | el2v 3487 | . . . . 5 ⊢ (𝑥(𝑅 ∩ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
| 9 | 8 | imbi1i 349 | . . . 4 ⊢ ((𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| 10 | 9 | 2albii 1820 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ ◡𝑅)𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| 11 | 6, 10 | bitri 275 | . 2 ⊢ ( CnvRefRel (𝑅 ∩ ◡𝑅) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| 12 | 1, 11 | bianbi 627 | 1 ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 Vcvv 3480 ∩ cin 3950 class class class wbr 5143 ◡ccnv 5684 Rel wrel 5690 CnvRefRel wcnvrefrel 38191 AntisymRel wantisymrel 38219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-cnvrefrel 38528 df-antisymrel 38761 |
| This theorem is referenced by: antisymrelres 38764 antisymrelressn 38765 |
| Copyright terms: Public domain | W3C validator |