Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brapply Structured version   Visualization version   GIF version

Theorem brapply 35919
Description: Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypotheses
Ref Expression
brapply.1 𝐴 ∈ V
brapply.2 𝐵 ∈ V
brapply.3 𝐶 ∈ V
Assertion
Ref Expression
brapply (⟨𝐴, 𝐵⟩Apply𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brapply
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5386 . . . 4 {(𝐴 “ {𝐵})} ∈ V
21inex1 5267 . . 3 ({(𝐴 “ {𝐵})} ∩ Singletons ) ∈ V
3 unieq 4878 . . . . 5 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
43unieqd 4880 . . . 4 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
54eqeq2d 2740 . . 3 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → (𝐶 = 𝑥𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons )))
62, 5ceqsexv 3495 . 2 (∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥) ↔ 𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
7 df-apply 35854 . . . 4 Apply = (( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))
87breqi 5108 . . 3 (⟨𝐴, 𝐵⟩Apply𝐶 ↔ ⟨𝐴, 𝐵⟩(( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐶)
9 opex 5419 . . . 4 𝐴, 𝐵⟩ ∈ V
10 brapply.3 . . . 4 𝐶 ∈ V
119, 10brco 5824 . . 3 (⟨𝐴, 𝐵⟩(( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐶 ↔ ∃𝑥(⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶))
12 vex 3448 . . . . . . 7 𝑥 ∈ V
139, 12brco 5824 . . . . . 6 (⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥 ↔ ∃𝑦(⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥))
14 vex 3448 . . . . . . . . . 10 𝑦 ∈ V
159, 14brco 5824 . . . . . . . . 9 (⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦 ↔ ∃𝑧(⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦))
16 brapply.1 . . . . . . . . . . . . 13 𝐴 ∈ V
17 brapply.2 . . . . . . . . . . . . 13 𝐵 ∈ V
18 vex 3448 . . . . . . . . . . . . 13 𝑧 ∈ V
1916, 17, 18brpprod3a 35867 . . . . . . . . . . . 12 (⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧 ↔ ∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏))
20 3anrot 1099 . . . . . . . . . . . . . 14 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ (𝐴 I 𝑎𝐵Singleton𝑏𝑧 = ⟨𝑎, 𝑏⟩))
21 vex 3448 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2221ideq 5806 . . . . . . . . . . . . . . . 16 (𝐴 I 𝑎𝐴 = 𝑎)
23 eqcom 2736 . . . . . . . . . . . . . . . 16 (𝐴 = 𝑎𝑎 = 𝐴)
2422, 23bitri 275 . . . . . . . . . . . . . . 15 (𝐴 I 𝑎𝑎 = 𝐴)
25 vex 3448 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
2617, 25brsingle 35898 . . . . . . . . . . . . . . 15 (𝐵Singleton𝑏𝑏 = {𝐵})
27 biid 261 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑎, 𝑏⟩)
2824, 26, 273anbi123i 1155 . . . . . . . . . . . . . 14 ((𝐴 I 𝑎𝐵Singleton𝑏𝑧 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
2920, 28bitri 275 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ (𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
30292exbii 1849 . . . . . . . . . . . 12 (∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
31 snex 5386 . . . . . . . . . . . . 13 {𝐵} ∈ V
32 opeq1 4833 . . . . . . . . . . . . . 14 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
3332eqeq2d 2740 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝐴, 𝑏⟩))
34 opeq2 4834 . . . . . . . . . . . . . 14 (𝑏 = {𝐵} → ⟨𝐴, 𝑏⟩ = ⟨𝐴, {𝐵}⟩)
3534eqeq2d 2740 . . . . . . . . . . . . 13 (𝑏 = {𝐵} → (𝑧 = ⟨𝐴, 𝑏⟩ ↔ 𝑧 = ⟨𝐴, {𝐵}⟩))
3616, 31, 33, 35ceqsex2v 3499 . . . . . . . . . . . 12 (∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩) ↔ 𝑧 = ⟨𝐴, {𝐵}⟩)
3719, 30, 363bitri 297 . . . . . . . . . . 11 (⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧 = ⟨𝐴, {𝐵}⟩)
3837anbi1i 624 . . . . . . . . . 10 ((⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦) ↔ (𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
3938exbii 1848 . . . . . . . . 9 (∃𝑧(⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦) ↔ ∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
40 opex 5419 . . . . . . . . . . 11 𝐴, {𝐵}⟩ ∈ V
41 breq1 5105 . . . . . . . . . . 11 (𝑧 = ⟨𝐴, {𝐵}⟩ → (𝑧(Singleton ∘ Img)𝑦 ↔ ⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦))
4240, 41ceqsexv 3495 . . . . . . . . . 10 (∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ ⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦)
4340, 14brco 5824 . . . . . . . . . 10 (⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦 ↔ ∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦))
4416, 31, 12brimg 35918 . . . . . . . . . . . . 13 (⟨𝐴, {𝐵}⟩Img𝑥𝑥 = (𝐴 “ {𝐵}))
4512, 14brsingle 35898 . . . . . . . . . . . . 13 (𝑥Singleton𝑦𝑦 = {𝑥})
4644, 45anbi12i 628 . . . . . . . . . . . 12 ((⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ (𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}))
4746exbii 1848 . . . . . . . . . . 11 (∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ ∃𝑥(𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}))
4816imaex 7870 . . . . . . . . . . . 12 (𝐴 “ {𝐵}) ∈ V
49 sneq 4595 . . . . . . . . . . . . 13 (𝑥 = (𝐴 “ {𝐵}) → {𝑥} = {(𝐴 “ {𝐵})})
5049eqeq2d 2740 . . . . . . . . . . . 12 (𝑥 = (𝐴 “ {𝐵}) → (𝑦 = {𝑥} ↔ 𝑦 = {(𝐴 “ {𝐵})}))
5148, 50ceqsexv 3495 . . . . . . . . . . 11 (∃𝑥(𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5247, 51bitri 275 . . . . . . . . . 10 (∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5342, 43, 523bitri 297 . . . . . . . . 9 (∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5415, 39, 533bitri 297 . . . . . . . 8 (⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦 = {(𝐴 “ {𝐵})})
55 eqid 2729 . . . . . . . . 9 ((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))
56 brxp 5680 . . . . . . . . . 10 (𝑦(V × V)𝑥 ↔ (𝑦 ∈ V ∧ 𝑥 ∈ V))
5714, 12, 56mpbir2an 711 . . . . . . . . 9 𝑦(V × V)𝑥
58 epel 5534 . . . . . . . . . . 11 (𝑧 E 𝑦𝑧𝑦)
5958anbi1ci 626 . . . . . . . . . 10 ((𝑧 Singletons 𝑧 E 𝑦) ↔ (𝑧𝑦𝑧 Singletons ))
6014brresi 5948 . . . . . . . . . 10 (𝑧( E ↾ Singletons )𝑦 ↔ (𝑧 Singletons 𝑧 E 𝑦))
61 elin 3927 . . . . . . . . . 10 (𝑧 ∈ (𝑦 Singletons ) ↔ (𝑧𝑦𝑧 Singletons ))
6259, 60, 613bitr4ri 304 . . . . . . . . 9 (𝑧 ∈ (𝑦 Singletons ) ↔ 𝑧( E ↾ Singletons )𝑦)
6314, 12, 55, 57, 62brtxpsd3 35877 . . . . . . . 8 (𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥𝑥 = (𝑦 Singletons ))
6454, 63anbi12i 628 . . . . . . 7 ((⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥) ↔ (𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )))
6564exbii 1848 . . . . . 6 (∃𝑦(⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥) ↔ ∃𝑦(𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )))
66 ineq1 4172 . . . . . . . 8 (𝑦 = {(𝐴 “ {𝐵})} → (𝑦 Singletons ) = ({(𝐴 “ {𝐵})} ∩ Singletons ))
6766eqeq2d 2740 . . . . . . 7 (𝑦 = {(𝐴 “ {𝐵})} → (𝑥 = (𝑦 Singletons ) ↔ 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons )))
681, 67ceqsexv 3495 . . . . . 6 (∃𝑦(𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )) ↔ 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
6913, 65, 683bitri 297 . . . . 5 (⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
7012, 10brco 5824 . . . . . 6 (𝑥( Bigcup Bigcup )𝐶 ↔ ∃𝑦(𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶))
7114brbigcup 35879 . . . . . . . . 9 (𝑥 Bigcup 𝑦 𝑥 = 𝑦)
72 eqcom 2736 . . . . . . . . 9 ( 𝑥 = 𝑦𝑦 = 𝑥)
7371, 72bitri 275 . . . . . . . 8 (𝑥 Bigcup 𝑦𝑦 = 𝑥)
7410brbigcup 35879 . . . . . . . . 9 (𝑦 Bigcup 𝐶 𝑦 = 𝐶)
75 eqcom 2736 . . . . . . . . 9 ( 𝑦 = 𝐶𝐶 = 𝑦)
7674, 75bitri 275 . . . . . . . 8 (𝑦 Bigcup 𝐶𝐶 = 𝑦)
7773, 76anbi12i 628 . . . . . . 7 ((𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶) ↔ (𝑦 = 𝑥𝐶 = 𝑦))
7877exbii 1848 . . . . . 6 (∃𝑦(𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶) ↔ ∃𝑦(𝑦 = 𝑥𝐶 = 𝑦))
79 vuniex 7695 . . . . . . 7 𝑥 ∈ V
80 unieq 4878 . . . . . . . 8 (𝑦 = 𝑥 𝑦 = 𝑥)
8180eqeq2d 2740 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 = 𝑦𝐶 = 𝑥))
8279, 81ceqsexv 3495 . . . . . 6 (∃𝑦(𝑦 = 𝑥𝐶 = 𝑦) ↔ 𝐶 = 𝑥)
8370, 78, 823bitri 297 . . . . 5 (𝑥( Bigcup Bigcup )𝐶𝐶 = 𝑥)
8469, 83anbi12i 628 . . . 4 ((⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶) ↔ (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
8584exbii 1848 . . 3 (∃𝑥(⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶) ↔ ∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
868, 11, 853bitri 297 . 2 (⟨𝐴, 𝐵⟩Apply𝐶 ↔ ∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
87 dffv5 35905 . . 3 (𝐴𝐵) = ({(𝐴 “ {𝐵})} ∩ Singletons )
8887eqeq2i 2742 . 2 (𝐶 = (𝐴𝐵) ↔ 𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
896, 86, 883bitr4i 303 1 (⟨𝐴, 𝐵⟩Apply𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444  cdif 3908  cin 3910  csymdif 4211  {csn 4585  cop 4591   cuni 4867   class class class wbr 5102   I cid 5525   E cep 5530   × cxp 5629  ran crn 5632  cres 5633  cima 5634  ccom 5635  cfv 6499  ctxp 35811  pprodcpprod 35812   Bigcup cbigcup 35815  Singletoncsingle 35819   Singletons csingles 35820  Imgcimg 35823  Applycapply 35826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-txp 35835  df-pprod 35836  df-bigcup 35839  df-singleton 35843  df-singles 35844  df-image 35845  df-cart 35846  df-img 35847  df-apply 35854
This theorem is referenced by:  dfrecs2  35931  dfrdg4  35932
  Copyright terms: Public domain W3C validator