Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brapply Structured version   Visualization version   GIF version

Theorem brapply 35980
Description: Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypotheses
Ref Expression
brapply.1 𝐴 ∈ V
brapply.2 𝐵 ∈ V
brapply.3 𝐶 ∈ V
Assertion
Ref Expression
brapply (⟨𝐴, 𝐵⟩Apply𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brapply
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5372 . . . 4 {(𝐴 “ {𝐵})} ∈ V
21inex1 5253 . . 3 ({(𝐴 “ {𝐵})} ∩ Singletons ) ∈ V
3 unieq 4867 . . . . 5 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
43unieqd 4869 . . . 4 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
54eqeq2d 2742 . . 3 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → (𝐶 = 𝑥𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons )))
62, 5ceqsexv 3486 . 2 (∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥) ↔ 𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
7 df-apply 35915 . . . 4 Apply = (( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))
87breqi 5095 . . 3 (⟨𝐴, 𝐵⟩Apply𝐶 ↔ ⟨𝐴, 𝐵⟩(( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐶)
9 opex 5402 . . . 4 𝐴, 𝐵⟩ ∈ V
10 brapply.3 . . . 4 𝐶 ∈ V
119, 10brco 5809 . . 3 (⟨𝐴, 𝐵⟩(( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐶 ↔ ∃𝑥(⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶))
12 vex 3440 . . . . . . 7 𝑥 ∈ V
139, 12brco 5809 . . . . . 6 (⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥 ↔ ∃𝑦(⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥))
14 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
159, 14brco 5809 . . . . . . . . 9 (⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦 ↔ ∃𝑧(⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦))
16 brapply.1 . . . . . . . . . . . . 13 𝐴 ∈ V
17 brapply.2 . . . . . . . . . . . . 13 𝐵 ∈ V
18 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
1916, 17, 18brpprod3a 35928 . . . . . . . . . . . 12 (⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧 ↔ ∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏))
20 3anrot 1099 . . . . . . . . . . . . . 14 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ (𝐴 I 𝑎𝐵Singleton𝑏𝑧 = ⟨𝑎, 𝑏⟩))
21 vex 3440 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2221ideq 5791 . . . . . . . . . . . . . . . 16 (𝐴 I 𝑎𝐴 = 𝑎)
23 eqcom 2738 . . . . . . . . . . . . . . . 16 (𝐴 = 𝑎𝑎 = 𝐴)
2422, 23bitri 275 . . . . . . . . . . . . . . 15 (𝐴 I 𝑎𝑎 = 𝐴)
25 vex 3440 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
2617, 25brsingle 35959 . . . . . . . . . . . . . . 15 (𝐵Singleton𝑏𝑏 = {𝐵})
27 biid 261 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑎, 𝑏⟩)
2824, 26, 273anbi123i 1155 . . . . . . . . . . . . . 14 ((𝐴 I 𝑎𝐵Singleton𝑏𝑧 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
2920, 28bitri 275 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ (𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
30292exbii 1850 . . . . . . . . . . . 12 (∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
31 snex 5372 . . . . . . . . . . . . 13 {𝐵} ∈ V
32 opeq1 4822 . . . . . . . . . . . . . 14 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
3332eqeq2d 2742 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝐴, 𝑏⟩))
34 opeq2 4823 . . . . . . . . . . . . . 14 (𝑏 = {𝐵} → ⟨𝐴, 𝑏⟩ = ⟨𝐴, {𝐵}⟩)
3534eqeq2d 2742 . . . . . . . . . . . . 13 (𝑏 = {𝐵} → (𝑧 = ⟨𝐴, 𝑏⟩ ↔ 𝑧 = ⟨𝐴, {𝐵}⟩))
3616, 31, 33, 35ceqsex2v 3490 . . . . . . . . . . . 12 (∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩) ↔ 𝑧 = ⟨𝐴, {𝐵}⟩)
3719, 30, 363bitri 297 . . . . . . . . . . 11 (⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧 = ⟨𝐴, {𝐵}⟩)
3837anbi1i 624 . . . . . . . . . 10 ((⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦) ↔ (𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
3938exbii 1849 . . . . . . . . 9 (∃𝑧(⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦) ↔ ∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
40 opex 5402 . . . . . . . . . . 11 𝐴, {𝐵}⟩ ∈ V
41 breq1 5092 . . . . . . . . . . 11 (𝑧 = ⟨𝐴, {𝐵}⟩ → (𝑧(Singleton ∘ Img)𝑦 ↔ ⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦))
4240, 41ceqsexv 3486 . . . . . . . . . 10 (∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ ⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦)
4340, 14brco 5809 . . . . . . . . . 10 (⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦 ↔ ∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦))
4416, 31, 12brimg 35979 . . . . . . . . . . . . 13 (⟨𝐴, {𝐵}⟩Img𝑥𝑥 = (𝐴 “ {𝐵}))
4512, 14brsingle 35959 . . . . . . . . . . . . 13 (𝑥Singleton𝑦𝑦 = {𝑥})
4644, 45anbi12i 628 . . . . . . . . . . . 12 ((⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ (𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}))
4746exbii 1849 . . . . . . . . . . 11 (∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ ∃𝑥(𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}))
4816imaex 7844 . . . . . . . . . . . 12 (𝐴 “ {𝐵}) ∈ V
49 sneq 4583 . . . . . . . . . . . . 13 (𝑥 = (𝐴 “ {𝐵}) → {𝑥} = {(𝐴 “ {𝐵})})
5049eqeq2d 2742 . . . . . . . . . . . 12 (𝑥 = (𝐴 “ {𝐵}) → (𝑦 = {𝑥} ↔ 𝑦 = {(𝐴 “ {𝐵})}))
5148, 50ceqsexv 3486 . . . . . . . . . . 11 (∃𝑥(𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5247, 51bitri 275 . . . . . . . . . 10 (∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5342, 43, 523bitri 297 . . . . . . . . 9 (∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5415, 39, 533bitri 297 . . . . . . . 8 (⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦 = {(𝐴 “ {𝐵})})
55 eqid 2731 . . . . . . . . 9 ((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))
56 brxp 5663 . . . . . . . . . 10 (𝑦(V × V)𝑥 ↔ (𝑦 ∈ V ∧ 𝑥 ∈ V))
5714, 12, 56mpbir2an 711 . . . . . . . . 9 𝑦(V × V)𝑥
58 epel 5517 . . . . . . . . . . 11 (𝑧 E 𝑦𝑧𝑦)
5958anbi1ci 626 . . . . . . . . . 10 ((𝑧 Singletons 𝑧 E 𝑦) ↔ (𝑧𝑦𝑧 Singletons ))
6014brresi 5936 . . . . . . . . . 10 (𝑧( E ↾ Singletons )𝑦 ↔ (𝑧 Singletons 𝑧 E 𝑦))
61 elin 3913 . . . . . . . . . 10 (𝑧 ∈ (𝑦 Singletons ) ↔ (𝑧𝑦𝑧 Singletons ))
6259, 60, 613bitr4ri 304 . . . . . . . . 9 (𝑧 ∈ (𝑦 Singletons ) ↔ 𝑧( E ↾ Singletons )𝑦)
6314, 12, 55, 57, 62brtxpsd3 35938 . . . . . . . 8 (𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥𝑥 = (𝑦 Singletons ))
6454, 63anbi12i 628 . . . . . . 7 ((⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥) ↔ (𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )))
6564exbii 1849 . . . . . 6 (∃𝑦(⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥) ↔ ∃𝑦(𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )))
66 ineq1 4160 . . . . . . . 8 (𝑦 = {(𝐴 “ {𝐵})} → (𝑦 Singletons ) = ({(𝐴 “ {𝐵})} ∩ Singletons ))
6766eqeq2d 2742 . . . . . . 7 (𝑦 = {(𝐴 “ {𝐵})} → (𝑥 = (𝑦 Singletons ) ↔ 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons )))
681, 67ceqsexv 3486 . . . . . 6 (∃𝑦(𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )) ↔ 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
6913, 65, 683bitri 297 . . . . 5 (⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
7012, 10brco 5809 . . . . . 6 (𝑥( Bigcup Bigcup )𝐶 ↔ ∃𝑦(𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶))
7114brbigcup 35940 . . . . . . . . 9 (𝑥 Bigcup 𝑦 𝑥 = 𝑦)
72 eqcom 2738 . . . . . . . . 9 ( 𝑥 = 𝑦𝑦 = 𝑥)
7371, 72bitri 275 . . . . . . . 8 (𝑥 Bigcup 𝑦𝑦 = 𝑥)
7410brbigcup 35940 . . . . . . . . 9 (𝑦 Bigcup 𝐶 𝑦 = 𝐶)
75 eqcom 2738 . . . . . . . . 9 ( 𝑦 = 𝐶𝐶 = 𝑦)
7674, 75bitri 275 . . . . . . . 8 (𝑦 Bigcup 𝐶𝐶 = 𝑦)
7773, 76anbi12i 628 . . . . . . 7 ((𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶) ↔ (𝑦 = 𝑥𝐶 = 𝑦))
7877exbii 1849 . . . . . 6 (∃𝑦(𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶) ↔ ∃𝑦(𝑦 = 𝑥𝐶 = 𝑦))
79 vuniex 7672 . . . . . . 7 𝑥 ∈ V
80 unieq 4867 . . . . . . . 8 (𝑦 = 𝑥 𝑦 = 𝑥)
8180eqeq2d 2742 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 = 𝑦𝐶 = 𝑥))
8279, 81ceqsexv 3486 . . . . . 6 (∃𝑦(𝑦 = 𝑥𝐶 = 𝑦) ↔ 𝐶 = 𝑥)
8370, 78, 823bitri 297 . . . . 5 (𝑥( Bigcup Bigcup )𝐶𝐶 = 𝑥)
8469, 83anbi12i 628 . . . 4 ((⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶) ↔ (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
8584exbii 1849 . . 3 (∃𝑥(⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶) ↔ ∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
868, 11, 853bitri 297 . 2 (⟨𝐴, 𝐵⟩Apply𝐶 ↔ ∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
87 dffv5 35966 . . 3 (𝐴𝐵) = ({(𝐴 “ {𝐵})} ∩ Singletons )
8887eqeq2i 2744 . 2 (𝐶 = (𝐴𝐵) ↔ 𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
896, 86, 883bitr4i 303 1 (⟨𝐴, 𝐵⟩Apply𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cdif 3894  cin 3896  csymdif 4199  {csn 4573  cop 4579   cuni 4856   class class class wbr 5089   I cid 5508   E cep 5513   × cxp 5612  ran crn 5615  cres 5616  cima 5617  ccom 5618  cfv 6481  ctxp 35872  pprodcpprod 35873   Bigcup cbigcup 35876  Singletoncsingle 35880   Singletons csingles 35881  Imgcimg 35884  Applycapply 35887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-symdif 4200  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35896  df-pprod 35897  df-bigcup 35900  df-singleton 35904  df-singles 35905  df-image 35906  df-cart 35907  df-img 35908  df-apply 35915
This theorem is referenced by:  dfrecs2  35994  dfrdg4  35995
  Copyright terms: Public domain W3C validator