Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brapply Structured version   Visualization version   GIF version

Theorem brapply 35214
Description: Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypotheses
Ref Expression
brapply.1 𝐴 ∈ V
brapply.2 𝐡 ∈ V
brapply.3 𝐢 ∈ V
Assertion
Ref Expression
brapply (⟨𝐴, 𝐡⟩Apply𝐢 ↔ 𝐢 = (π΄β€˜π΅))

Proof of Theorem brapply
Dummy variables π‘Ž 𝑏 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5430 . . . 4 {(𝐴 β€œ {𝐡})} ∈ V
21inex1 5316 . . 3 ({(𝐴 β€œ {𝐡})} ∩ Singletons ) ∈ V
3 unieq 4918 . . . . 5 (π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons ) β†’ βˆͺ π‘₯ = βˆͺ ({(𝐴 β€œ {𝐡})} ∩ Singletons ))
43unieqd 4921 . . . 4 (π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons ) β†’ βˆͺ βˆͺ π‘₯ = βˆͺ βˆͺ ({(𝐴 β€œ {𝐡})} ∩ Singletons ))
54eqeq2d 2741 . . 3 (π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons ) β†’ (𝐢 = βˆͺ βˆͺ π‘₯ ↔ 𝐢 = βˆͺ βˆͺ ({(𝐴 β€œ {𝐡})} ∩ Singletons )))
62, 5ceqsexv 3524 . 2 (βˆƒπ‘₯(π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons ) ∧ 𝐢 = βˆͺ βˆͺ π‘₯) ↔ 𝐢 = βˆͺ βˆͺ ({(𝐴 β€œ {𝐡})} ∩ Singletons ))
7 df-apply 35149 . . . 4 Apply = (( Bigcup ∘ Bigcup ) ∘ (((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))
87breqi 5153 . . 3 (⟨𝐴, 𝐡⟩Apply𝐢 ↔ ⟨𝐴, 𝐡⟩(( Bigcup ∘ Bigcup ) ∘ (((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐢)
9 opex 5463 . . . 4 ⟨𝐴, 𝐡⟩ ∈ V
10 brapply.3 . . . 4 𝐢 ∈ V
119, 10brco 5869 . . 3 (⟨𝐴, 𝐡⟩(( Bigcup ∘ Bigcup ) ∘ (((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐢 ↔ βˆƒπ‘₯(⟨𝐴, 𝐡⟩(((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))π‘₯ ∧ π‘₯( Bigcup ∘ Bigcup )𝐢))
12 vex 3476 . . . . . . 7 π‘₯ ∈ V
139, 12brco 5869 . . . . . 6 (⟨𝐴, 𝐡⟩(((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))π‘₯ ↔ βˆƒπ‘¦(⟨𝐴, 𝐡⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦 ∧ 𝑦((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V)))π‘₯))
14 vex 3476 . . . . . . . . . 10 𝑦 ∈ V
159, 14brco 5869 . . . . . . . . 9 (⟨𝐴, 𝐡⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦 ↔ βˆƒπ‘§(⟨𝐴, 𝐡⟩pprod( I , Singleton)𝑧 ∧ 𝑧(Singleton ∘ Img)𝑦))
16 brapply.1 . . . . . . . . . . . . 13 𝐴 ∈ V
17 brapply.2 . . . . . . . . . . . . 13 𝐡 ∈ V
18 vex 3476 . . . . . . . . . . . . 13 𝑧 ∈ V
1916, 17, 18brpprod3a 35162 . . . . . . . . . . . 12 (⟨𝐴, 𝐡⟩pprod( I , Singleton)𝑧 ↔ βˆƒπ‘Žβˆƒπ‘(𝑧 = βŸ¨π‘Ž, π‘βŸ© ∧ 𝐴 I π‘Ž ∧ 𝐡Singleton𝑏))
20 3anrot 1098 . . . . . . . . . . . . . 14 ((𝑧 = βŸ¨π‘Ž, π‘βŸ© ∧ 𝐴 I π‘Ž ∧ 𝐡Singleton𝑏) ↔ (𝐴 I π‘Ž ∧ 𝐡Singleton𝑏 ∧ 𝑧 = βŸ¨π‘Ž, π‘βŸ©))
21 vex 3476 . . . . . . . . . . . . . . . . 17 π‘Ž ∈ V
2221ideq 5851 . . . . . . . . . . . . . . . 16 (𝐴 I π‘Ž ↔ 𝐴 = π‘Ž)
23 eqcom 2737 . . . . . . . . . . . . . . . 16 (𝐴 = π‘Ž ↔ π‘Ž = 𝐴)
2422, 23bitri 274 . . . . . . . . . . . . . . 15 (𝐴 I π‘Ž ↔ π‘Ž = 𝐴)
25 vex 3476 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
2617, 25brsingle 35193 . . . . . . . . . . . . . . 15 (𝐡Singleton𝑏 ↔ 𝑏 = {𝐡})
27 biid 260 . . . . . . . . . . . . . . 15 (𝑧 = βŸ¨π‘Ž, π‘βŸ© ↔ 𝑧 = βŸ¨π‘Ž, π‘βŸ©)
2824, 26, 273anbi123i 1153 . . . . . . . . . . . . . 14 ((𝐴 I π‘Ž ∧ 𝐡Singleton𝑏 ∧ 𝑧 = βŸ¨π‘Ž, π‘βŸ©) ↔ (π‘Ž = 𝐴 ∧ 𝑏 = {𝐡} ∧ 𝑧 = βŸ¨π‘Ž, π‘βŸ©))
2920, 28bitri 274 . . . . . . . . . . . . 13 ((𝑧 = βŸ¨π‘Ž, π‘βŸ© ∧ 𝐴 I π‘Ž ∧ 𝐡Singleton𝑏) ↔ (π‘Ž = 𝐴 ∧ 𝑏 = {𝐡} ∧ 𝑧 = βŸ¨π‘Ž, π‘βŸ©))
30292exbii 1849 . . . . . . . . . . . 12 (βˆƒπ‘Žβˆƒπ‘(𝑧 = βŸ¨π‘Ž, π‘βŸ© ∧ 𝐴 I π‘Ž ∧ 𝐡Singleton𝑏) ↔ βˆƒπ‘Žβˆƒπ‘(π‘Ž = 𝐴 ∧ 𝑏 = {𝐡} ∧ 𝑧 = βŸ¨π‘Ž, π‘βŸ©))
31 snex 5430 . . . . . . . . . . . . 13 {𝐡} ∈ V
32 opeq1 4872 . . . . . . . . . . . . . 14 (π‘Ž = 𝐴 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨𝐴, π‘βŸ©)
3332eqeq2d 2741 . . . . . . . . . . . . 13 (π‘Ž = 𝐴 β†’ (𝑧 = βŸ¨π‘Ž, π‘βŸ© ↔ 𝑧 = ⟨𝐴, π‘βŸ©))
34 opeq2 4873 . . . . . . . . . . . . . 14 (𝑏 = {𝐡} β†’ ⟨𝐴, π‘βŸ© = ⟨𝐴, {𝐡}⟩)
3534eqeq2d 2741 . . . . . . . . . . . . 13 (𝑏 = {𝐡} β†’ (𝑧 = ⟨𝐴, π‘βŸ© ↔ 𝑧 = ⟨𝐴, {𝐡}⟩))
3616, 31, 33, 35ceqsex2v 3529 . . . . . . . . . . . 12 (βˆƒπ‘Žβˆƒπ‘(π‘Ž = 𝐴 ∧ 𝑏 = {𝐡} ∧ 𝑧 = βŸ¨π‘Ž, π‘βŸ©) ↔ 𝑧 = ⟨𝐴, {𝐡}⟩)
3719, 30, 363bitri 296 . . . . . . . . . . 11 (⟨𝐴, 𝐡⟩pprod( I , Singleton)𝑧 ↔ 𝑧 = ⟨𝐴, {𝐡}⟩)
3837anbi1i 622 . . . . . . . . . 10 ((⟨𝐴, 𝐡⟩pprod( I , Singleton)𝑧 ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ (𝑧 = ⟨𝐴, {𝐡}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
3938exbii 1848 . . . . . . . . 9 (βˆƒπ‘§(⟨𝐴, 𝐡⟩pprod( I , Singleton)𝑧 ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ βˆƒπ‘§(𝑧 = ⟨𝐴, {𝐡}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
40 opex 5463 . . . . . . . . . . 11 ⟨𝐴, {𝐡}⟩ ∈ V
41 breq1 5150 . . . . . . . . . . 11 (𝑧 = ⟨𝐴, {𝐡}⟩ β†’ (𝑧(Singleton ∘ Img)𝑦 ↔ ⟨𝐴, {𝐡}⟩(Singleton ∘ Img)𝑦))
4240, 41ceqsexv 3524 . . . . . . . . . 10 (βˆƒπ‘§(𝑧 = ⟨𝐴, {𝐡}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ ⟨𝐴, {𝐡}⟩(Singleton ∘ Img)𝑦)
4340, 14brco 5869 . . . . . . . . . 10 (⟨𝐴, {𝐡}⟩(Singleton ∘ Img)𝑦 ↔ βˆƒπ‘₯(⟨𝐴, {𝐡}⟩Imgπ‘₯ ∧ π‘₯Singleton𝑦))
4416, 31, 12brimg 35213 . . . . . . . . . . . . 13 (⟨𝐴, {𝐡}⟩Imgπ‘₯ ↔ π‘₯ = (𝐴 β€œ {𝐡}))
4512, 14brsingle 35193 . . . . . . . . . . . . 13 (π‘₯Singleton𝑦 ↔ 𝑦 = {π‘₯})
4644, 45anbi12i 625 . . . . . . . . . . . 12 ((⟨𝐴, {𝐡}⟩Imgπ‘₯ ∧ π‘₯Singleton𝑦) ↔ (π‘₯ = (𝐴 β€œ {𝐡}) ∧ 𝑦 = {π‘₯}))
4746exbii 1848 . . . . . . . . . . 11 (βˆƒπ‘₯(⟨𝐴, {𝐡}⟩Imgπ‘₯ ∧ π‘₯Singleton𝑦) ↔ βˆƒπ‘₯(π‘₯ = (𝐴 β€œ {𝐡}) ∧ 𝑦 = {π‘₯}))
4816imaex 7909 . . . . . . . . . . . 12 (𝐴 β€œ {𝐡}) ∈ V
49 sneq 4637 . . . . . . . . . . . . 13 (π‘₯ = (𝐴 β€œ {𝐡}) β†’ {π‘₯} = {(𝐴 β€œ {𝐡})})
5049eqeq2d 2741 . . . . . . . . . . . 12 (π‘₯ = (𝐴 β€œ {𝐡}) β†’ (𝑦 = {π‘₯} ↔ 𝑦 = {(𝐴 β€œ {𝐡})}))
5148, 50ceqsexv 3524 . . . . . . . . . . 11 (βˆƒπ‘₯(π‘₯ = (𝐴 β€œ {𝐡}) ∧ 𝑦 = {π‘₯}) ↔ 𝑦 = {(𝐴 β€œ {𝐡})})
5247, 51bitri 274 . . . . . . . . . 10 (βˆƒπ‘₯(⟨𝐴, {𝐡}⟩Imgπ‘₯ ∧ π‘₯Singleton𝑦) ↔ 𝑦 = {(𝐴 β€œ {𝐡})})
5342, 43, 523bitri 296 . . . . . . . . 9 (βˆƒπ‘§(𝑧 = ⟨𝐴, {𝐡}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ 𝑦 = {(𝐴 β€œ {𝐡})})
5415, 39, 533bitri 296 . . . . . . . 8 (⟨𝐴, 𝐡⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦 ↔ 𝑦 = {(𝐴 β€œ {𝐡})})
55 eqid 2730 . . . . . . . . 9 ((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) = ((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V)))
56 brxp 5724 . . . . . . . . . 10 (𝑦(V Γ— V)π‘₯ ↔ (𝑦 ∈ V ∧ π‘₯ ∈ V))
5714, 12, 56mpbir2an 707 . . . . . . . . 9 𝑦(V Γ— V)π‘₯
58 epel 5582 . . . . . . . . . . 11 (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦)
5958anbi1ci 624 . . . . . . . . . 10 ((𝑧 ∈ Singletons ∧ 𝑧 E 𝑦) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ Singletons ))
6014brresi 5989 . . . . . . . . . 10 (𝑧( E β†Ύ Singletons )𝑦 ↔ (𝑧 ∈ Singletons ∧ 𝑧 E 𝑦))
61 elin 3963 . . . . . . . . . 10 (𝑧 ∈ (𝑦 ∩ Singletons ) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ Singletons ))
6259, 60, 613bitr4ri 303 . . . . . . . . 9 (𝑧 ∈ (𝑦 ∩ Singletons ) ↔ 𝑧( E β†Ύ Singletons )𝑦)
6314, 12, 55, 57, 62brtxpsd3 35172 . . . . . . . 8 (𝑦((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V)))π‘₯ ↔ π‘₯ = (𝑦 ∩ Singletons ))
6454, 63anbi12i 625 . . . . . . 7 ((⟨𝐴, 𝐡⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦 ∧ 𝑦((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V)))π‘₯) ↔ (𝑦 = {(𝐴 β€œ {𝐡})} ∧ π‘₯ = (𝑦 ∩ Singletons )))
6564exbii 1848 . . . . . 6 (βˆƒπ‘¦(⟨𝐴, 𝐡⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦 ∧ 𝑦((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V)))π‘₯) ↔ βˆƒπ‘¦(𝑦 = {(𝐴 β€œ {𝐡})} ∧ π‘₯ = (𝑦 ∩ Singletons )))
66 ineq1 4204 . . . . . . . 8 (𝑦 = {(𝐴 β€œ {𝐡})} β†’ (𝑦 ∩ Singletons ) = ({(𝐴 β€œ {𝐡})} ∩ Singletons ))
6766eqeq2d 2741 . . . . . . 7 (𝑦 = {(𝐴 β€œ {𝐡})} β†’ (π‘₯ = (𝑦 ∩ Singletons ) ↔ π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons )))
681, 67ceqsexv 3524 . . . . . 6 (βˆƒπ‘¦(𝑦 = {(𝐴 β€œ {𝐡})} ∧ π‘₯ = (𝑦 ∩ Singletons )) ↔ π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons ))
6913, 65, 683bitri 296 . . . . 5 (⟨𝐴, 𝐡⟩(((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))π‘₯ ↔ π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons ))
7012, 10brco 5869 . . . . . 6 (π‘₯( Bigcup ∘ Bigcup )𝐢 ↔ βˆƒπ‘¦(π‘₯ Bigcup 𝑦 ∧ 𝑦 Bigcup 𝐢))
7114brbigcup 35174 . . . . . . . . 9 (π‘₯ Bigcup 𝑦 ↔ βˆͺ π‘₯ = 𝑦)
72 eqcom 2737 . . . . . . . . 9 (βˆͺ π‘₯ = 𝑦 ↔ 𝑦 = βˆͺ π‘₯)
7371, 72bitri 274 . . . . . . . 8 (π‘₯ Bigcup 𝑦 ↔ 𝑦 = βˆͺ π‘₯)
7410brbigcup 35174 . . . . . . . . 9 (𝑦 Bigcup 𝐢 ↔ βˆͺ 𝑦 = 𝐢)
75 eqcom 2737 . . . . . . . . 9 (βˆͺ 𝑦 = 𝐢 ↔ 𝐢 = βˆͺ 𝑦)
7674, 75bitri 274 . . . . . . . 8 (𝑦 Bigcup 𝐢 ↔ 𝐢 = βˆͺ 𝑦)
7773, 76anbi12i 625 . . . . . . 7 ((π‘₯ Bigcup 𝑦 ∧ 𝑦 Bigcup 𝐢) ↔ (𝑦 = βˆͺ π‘₯ ∧ 𝐢 = βˆͺ 𝑦))
7877exbii 1848 . . . . . 6 (βˆƒπ‘¦(π‘₯ Bigcup 𝑦 ∧ 𝑦 Bigcup 𝐢) ↔ βˆƒπ‘¦(𝑦 = βˆͺ π‘₯ ∧ 𝐢 = βˆͺ 𝑦))
79 vuniex 7731 . . . . . . 7 βˆͺ π‘₯ ∈ V
80 unieq 4918 . . . . . . . 8 (𝑦 = βˆͺ π‘₯ β†’ βˆͺ 𝑦 = βˆͺ βˆͺ π‘₯)
8180eqeq2d 2741 . . . . . . 7 (𝑦 = βˆͺ π‘₯ β†’ (𝐢 = βˆͺ 𝑦 ↔ 𝐢 = βˆͺ βˆͺ π‘₯))
8279, 81ceqsexv 3524 . . . . . 6 (βˆƒπ‘¦(𝑦 = βˆͺ π‘₯ ∧ 𝐢 = βˆͺ 𝑦) ↔ 𝐢 = βˆͺ βˆͺ π‘₯)
8370, 78, 823bitri 296 . . . . 5 (π‘₯( Bigcup ∘ Bigcup )𝐢 ↔ 𝐢 = βˆͺ βˆͺ π‘₯)
8469, 83anbi12i 625 . . . 4 ((⟨𝐴, 𝐡⟩(((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))π‘₯ ∧ π‘₯( Bigcup ∘ Bigcup )𝐢) ↔ (π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons ) ∧ 𝐢 = βˆͺ βˆͺ π‘₯))
8584exbii 1848 . . 3 (βˆƒπ‘₯(⟨𝐴, 𝐡⟩(((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))π‘₯ ∧ π‘₯( Bigcup ∘ Bigcup )𝐢) ↔ βˆƒπ‘₯(π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons ) ∧ 𝐢 = βˆͺ βˆͺ π‘₯))
868, 11, 853bitri 296 . 2 (⟨𝐴, 𝐡⟩Apply𝐢 ↔ βˆƒπ‘₯(π‘₯ = ({(𝐴 β€œ {𝐡})} ∩ Singletons ) ∧ 𝐢 = βˆͺ βˆͺ π‘₯))
87 dffv5 35200 . . 3 (π΄β€˜π΅) = βˆͺ βˆͺ ({(𝐴 β€œ {𝐡})} ∩ Singletons )
8887eqeq2i 2743 . 2 (𝐢 = (π΄β€˜π΅) ↔ 𝐢 = βˆͺ βˆͺ ({(𝐴 β€œ {𝐡})} ∩ Singletons ))
896, 86, 883bitr4i 302 1 (⟨𝐴, 𝐡⟩Apply𝐢 ↔ 𝐢 = (π΄β€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  Vcvv 3472   βˆ– cdif 3944   ∩ cin 3946   β–³ csymdif 4240  {csn 4627  βŸ¨cop 4633  βˆͺ cuni 4907   class class class wbr 5147   I cid 5572   E cep 5578   Γ— cxp 5673  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678   ∘ ccom 5679  β€˜cfv 6542   βŠ— ctxp 35106  pprodcpprod 35107   Bigcup cbigcup 35110  Singletoncsingle 35114   Singletons csingles 35115  Imgcimg 35118  Applycapply 35121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-symdif 4241  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-eprel 5579  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-1st 7977  df-2nd 7978  df-txp 35130  df-pprod 35131  df-bigcup 35134  df-singleton 35138  df-singles 35139  df-image 35140  df-cart 35141  df-img 35142  df-apply 35149
This theorem is referenced by:  dfrecs2  35226  dfrdg4  35227
  Copyright terms: Public domain W3C validator