Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brapply Structured version   Visualization version   GIF version

Theorem brapply 35902
Description: Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypotheses
Ref Expression
brapply.1 𝐴 ∈ V
brapply.2 𝐵 ∈ V
brapply.3 𝐶 ∈ V
Assertion
Ref Expression
brapply (⟨𝐴, 𝐵⟩Apply𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brapply
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5451 . . . 4 {(𝐴 “ {𝐵})} ∈ V
21inex1 5335 . . 3 ({(𝐴 “ {𝐵})} ∩ Singletons ) ∈ V
3 unieq 4942 . . . . 5 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
43unieqd 4944 . . . 4 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
54eqeq2d 2751 . . 3 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → (𝐶 = 𝑥𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons )))
62, 5ceqsexv 3542 . 2 (∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥) ↔ 𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
7 df-apply 35837 . . . 4 Apply = (( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))
87breqi 5172 . . 3 (⟨𝐴, 𝐵⟩Apply𝐶 ↔ ⟨𝐴, 𝐵⟩(( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐶)
9 opex 5484 . . . 4 𝐴, 𝐵⟩ ∈ V
10 brapply.3 . . . 4 𝐶 ∈ V
119, 10brco 5895 . . 3 (⟨𝐴, 𝐵⟩(( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐶 ↔ ∃𝑥(⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶))
12 vex 3492 . . . . . . 7 𝑥 ∈ V
139, 12brco 5895 . . . . . 6 (⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥 ↔ ∃𝑦(⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥))
14 vex 3492 . . . . . . . . . 10 𝑦 ∈ V
159, 14brco 5895 . . . . . . . . 9 (⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦 ↔ ∃𝑧(⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦))
16 brapply.1 . . . . . . . . . . . . 13 𝐴 ∈ V
17 brapply.2 . . . . . . . . . . . . 13 𝐵 ∈ V
18 vex 3492 . . . . . . . . . . . . 13 𝑧 ∈ V
1916, 17, 18brpprod3a 35850 . . . . . . . . . . . 12 (⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧 ↔ ∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏))
20 3anrot 1100 . . . . . . . . . . . . . 14 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ (𝐴 I 𝑎𝐵Singleton𝑏𝑧 = ⟨𝑎, 𝑏⟩))
21 vex 3492 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2221ideq 5877 . . . . . . . . . . . . . . . 16 (𝐴 I 𝑎𝐴 = 𝑎)
23 eqcom 2747 . . . . . . . . . . . . . . . 16 (𝐴 = 𝑎𝑎 = 𝐴)
2422, 23bitri 275 . . . . . . . . . . . . . . 15 (𝐴 I 𝑎𝑎 = 𝐴)
25 vex 3492 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
2617, 25brsingle 35881 . . . . . . . . . . . . . . 15 (𝐵Singleton𝑏𝑏 = {𝐵})
27 biid 261 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑎, 𝑏⟩)
2824, 26, 273anbi123i 1155 . . . . . . . . . . . . . 14 ((𝐴 I 𝑎𝐵Singleton𝑏𝑧 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
2920, 28bitri 275 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ (𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
30292exbii 1847 . . . . . . . . . . . 12 (∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
31 snex 5451 . . . . . . . . . . . . 13 {𝐵} ∈ V
32 opeq1 4897 . . . . . . . . . . . . . 14 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
3332eqeq2d 2751 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝐴, 𝑏⟩))
34 opeq2 4898 . . . . . . . . . . . . . 14 (𝑏 = {𝐵} → ⟨𝐴, 𝑏⟩ = ⟨𝐴, {𝐵}⟩)
3534eqeq2d 2751 . . . . . . . . . . . . 13 (𝑏 = {𝐵} → (𝑧 = ⟨𝐴, 𝑏⟩ ↔ 𝑧 = ⟨𝐴, {𝐵}⟩))
3616, 31, 33, 35ceqsex2v 3548 . . . . . . . . . . . 12 (∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩) ↔ 𝑧 = ⟨𝐴, {𝐵}⟩)
3719, 30, 363bitri 297 . . . . . . . . . . 11 (⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧 = ⟨𝐴, {𝐵}⟩)
3837anbi1i 623 . . . . . . . . . 10 ((⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦) ↔ (𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
3938exbii 1846 . . . . . . . . 9 (∃𝑧(⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦) ↔ ∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
40 opex 5484 . . . . . . . . . . 11 𝐴, {𝐵}⟩ ∈ V
41 breq1 5169 . . . . . . . . . . 11 (𝑧 = ⟨𝐴, {𝐵}⟩ → (𝑧(Singleton ∘ Img)𝑦 ↔ ⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦))
4240, 41ceqsexv 3542 . . . . . . . . . 10 (∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ ⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦)
4340, 14brco 5895 . . . . . . . . . 10 (⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦 ↔ ∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦))
4416, 31, 12brimg 35901 . . . . . . . . . . . . 13 (⟨𝐴, {𝐵}⟩Img𝑥𝑥 = (𝐴 “ {𝐵}))
4512, 14brsingle 35881 . . . . . . . . . . . . 13 (𝑥Singleton𝑦𝑦 = {𝑥})
4644, 45anbi12i 627 . . . . . . . . . . . 12 ((⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ (𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}))
4746exbii 1846 . . . . . . . . . . 11 (∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ ∃𝑥(𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}))
4816imaex 7954 . . . . . . . . . . . 12 (𝐴 “ {𝐵}) ∈ V
49 sneq 4658 . . . . . . . . . . . . 13 (𝑥 = (𝐴 “ {𝐵}) → {𝑥} = {(𝐴 “ {𝐵})})
5049eqeq2d 2751 . . . . . . . . . . . 12 (𝑥 = (𝐴 “ {𝐵}) → (𝑦 = {𝑥} ↔ 𝑦 = {(𝐴 “ {𝐵})}))
5148, 50ceqsexv 3542 . . . . . . . . . . 11 (∃𝑥(𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5247, 51bitri 275 . . . . . . . . . 10 (∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5342, 43, 523bitri 297 . . . . . . . . 9 (∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5415, 39, 533bitri 297 . . . . . . . 8 (⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦 = {(𝐴 “ {𝐵})})
55 eqid 2740 . . . . . . . . 9 ((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))
56 brxp 5749 . . . . . . . . . 10 (𝑦(V × V)𝑥 ↔ (𝑦 ∈ V ∧ 𝑥 ∈ V))
5714, 12, 56mpbir2an 710 . . . . . . . . 9 𝑦(V × V)𝑥
58 epel 5602 . . . . . . . . . . 11 (𝑧 E 𝑦𝑧𝑦)
5958anbi1ci 625 . . . . . . . . . 10 ((𝑧 Singletons 𝑧 E 𝑦) ↔ (𝑧𝑦𝑧 Singletons ))
6014brresi 6018 . . . . . . . . . 10 (𝑧( E ↾ Singletons )𝑦 ↔ (𝑧 Singletons 𝑧 E 𝑦))
61 elin 3992 . . . . . . . . . 10 (𝑧 ∈ (𝑦 Singletons ) ↔ (𝑧𝑦𝑧 Singletons ))
6259, 60, 613bitr4ri 304 . . . . . . . . 9 (𝑧 ∈ (𝑦 Singletons ) ↔ 𝑧( E ↾ Singletons )𝑦)
6314, 12, 55, 57, 62brtxpsd3 35860 . . . . . . . 8 (𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥𝑥 = (𝑦 Singletons ))
6454, 63anbi12i 627 . . . . . . 7 ((⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥) ↔ (𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )))
6564exbii 1846 . . . . . 6 (∃𝑦(⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥) ↔ ∃𝑦(𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )))
66 ineq1 4234 . . . . . . . 8 (𝑦 = {(𝐴 “ {𝐵})} → (𝑦 Singletons ) = ({(𝐴 “ {𝐵})} ∩ Singletons ))
6766eqeq2d 2751 . . . . . . 7 (𝑦 = {(𝐴 “ {𝐵})} → (𝑥 = (𝑦 Singletons ) ↔ 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons )))
681, 67ceqsexv 3542 . . . . . 6 (∃𝑦(𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )) ↔ 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
6913, 65, 683bitri 297 . . . . 5 (⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
7012, 10brco 5895 . . . . . 6 (𝑥( Bigcup Bigcup )𝐶 ↔ ∃𝑦(𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶))
7114brbigcup 35862 . . . . . . . . 9 (𝑥 Bigcup 𝑦 𝑥 = 𝑦)
72 eqcom 2747 . . . . . . . . 9 ( 𝑥 = 𝑦𝑦 = 𝑥)
7371, 72bitri 275 . . . . . . . 8 (𝑥 Bigcup 𝑦𝑦 = 𝑥)
7410brbigcup 35862 . . . . . . . . 9 (𝑦 Bigcup 𝐶 𝑦 = 𝐶)
75 eqcom 2747 . . . . . . . . 9 ( 𝑦 = 𝐶𝐶 = 𝑦)
7674, 75bitri 275 . . . . . . . 8 (𝑦 Bigcup 𝐶𝐶 = 𝑦)
7773, 76anbi12i 627 . . . . . . 7 ((𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶) ↔ (𝑦 = 𝑥𝐶 = 𝑦))
7877exbii 1846 . . . . . 6 (∃𝑦(𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶) ↔ ∃𝑦(𝑦 = 𝑥𝐶 = 𝑦))
79 vuniex 7774 . . . . . . 7 𝑥 ∈ V
80 unieq 4942 . . . . . . . 8 (𝑦 = 𝑥 𝑦 = 𝑥)
8180eqeq2d 2751 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 = 𝑦𝐶 = 𝑥))
8279, 81ceqsexv 3542 . . . . . 6 (∃𝑦(𝑦 = 𝑥𝐶 = 𝑦) ↔ 𝐶 = 𝑥)
8370, 78, 823bitri 297 . . . . 5 (𝑥( Bigcup Bigcup )𝐶𝐶 = 𝑥)
8469, 83anbi12i 627 . . . 4 ((⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶) ↔ (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
8584exbii 1846 . . 3 (∃𝑥(⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶) ↔ ∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
868, 11, 853bitri 297 . 2 (⟨𝐴, 𝐵⟩Apply𝐶 ↔ ∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
87 dffv5 35888 . . 3 (𝐴𝐵) = ({(𝐴 “ {𝐵})} ∩ Singletons )
8887eqeq2i 2753 . 2 (𝐶 = (𝐴𝐵) ↔ 𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
896, 86, 883bitr4i 303 1 (⟨𝐴, 𝐵⟩Apply𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cdif 3973  cin 3975  csymdif 4271  {csn 4648  cop 4654   cuni 4931   class class class wbr 5166   I cid 5592   E cep 5598   × cxp 5698  ran crn 5701  cres 5702  cima 5703  ccom 5704  cfv 6573  ctxp 35794  pprodcpprod 35795   Bigcup cbigcup 35798  Singletoncsingle 35802   Singletons csingles 35803  Imgcimg 35806  Applycapply 35809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-txp 35818  df-pprod 35819  df-bigcup 35822  df-singleton 35826  df-singles 35827  df-image 35828  df-cart 35829  df-img 35830  df-apply 35837
This theorem is referenced by:  dfrecs2  35914  dfrdg4  35915
  Copyright terms: Public domain W3C validator