![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-funpart | Structured version Visualization version GIF version |
Description: Define the functional part of a class 𝐹. This is the maximal part of 𝐹 that is a function. See funpartfun 34910 and funpartfv 34912 for the meaning of this statement. (Contributed by Scott Fenton, 16-Apr-2014.) |
Ref | Expression |
---|---|
df-funpart | ⊢ Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | 1 | cfunpart 34816 | . 2 class Funpart𝐹 |
3 | 1 | cimage 34807 | . . . . . 6 class Image𝐹 |
4 | csingle 34805 | . . . . . 6 class Singleton | |
5 | 3, 4 | ccom 5680 | . . . . 5 class (Image𝐹 ∘ Singleton) |
6 | cvv 3474 | . . . . . 6 class V | |
7 | csingles 34806 | . . . . . 6 class Singletons | |
8 | 6, 7 | cxp 5674 | . . . . 5 class (V × Singletons ) |
9 | 5, 8 | cin 3947 | . . . 4 class ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) |
10 | 9 | cdm 5676 | . . 3 class dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) |
11 | 1, 10 | cres 5678 | . 2 class (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) |
12 | 2, 11 | wceq 1541 | 1 wff Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) |
Colors of variables: wff setvar class |
This definition is referenced by: funpartfun 34910 funpartss 34911 funpartfv 34912 |
Copyright terms: Public domain | W3C validator |