|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-archi | Structured version Visualization version GIF version | ||
| Description: A structure said to be Archimedean if it has no infinitesimal elements. (Contributed by Thierry Arnoux, 30-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| df-archi | ⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | carchi 33185 | . 2 class Archi | |
| 2 | vw | . . . . . 6 setvar 𝑤 | |
| 3 | 2 | cv 1538 | . . . . 5 class 𝑤 | 
| 4 | cinftm 33184 | . . . . 5 class ⋘ | |
| 5 | 3, 4 | cfv 6560 | . . . 4 class (⋘‘𝑤) | 
| 6 | c0 4332 | . . . 4 class ∅ | |
| 7 | 5, 6 | wceq 1539 | . . 3 wff (⋘‘𝑤) = ∅ | 
| 8 | 7, 2 | cab 2713 | . 2 class {𝑤 ∣ (⋘‘𝑤) = ∅} | 
| 9 | 1, 8 | wceq 1539 | 1 wff Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: isarchi 33190 | 
| Copyright terms: Public domain | W3C validator |