| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-archi | Structured version Visualization version GIF version | ||
| Description: A structure said to be Archimedean if it has no infinitesimal elements. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| df-archi | ⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carchi 33180 | . 2 class Archi | |
| 2 | vw | . . . . . 6 setvar 𝑤 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑤 |
| 4 | cinftm 33179 | . . . . 5 class ⋘ | |
| 5 | 3, 4 | cfv 6536 | . . . 4 class (⋘‘𝑤) |
| 6 | c0 4313 | . . . 4 class ∅ | |
| 7 | 5, 6 | wceq 1540 | . . 3 wff (⋘‘𝑤) = ∅ |
| 8 | 7, 2 | cab 2714 | . 2 class {𝑤 ∣ (⋘‘𝑤) = ∅} |
| 9 | 1, 8 | wceq 1540 | 1 wff Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isarchi 33185 |
| Copyright terms: Public domain | W3C validator |