Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi Structured version   Visualization version   GIF version

Theorem isarchi 33143
Description: Express the predicate "𝑊 is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi.b 𝐵 = (Base‘𝑊)
isarchi.0 0 = (0g𝑊)
isarchi.i < = (⋘‘𝑊)
Assertion
Ref Expression
isarchi (𝑊𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑊,𝑦
Allowed substitution hints:   < (𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isarchi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6826 . . 3 (𝑤 = 𝑊 → ((⋘‘𝑤) = ∅ ↔ (⋘‘𝑊) = ∅))
2 df-archi 33140 . . 3 Archi = {𝑤 ∣ (⋘‘𝑤) = ∅}
31, 2elab2g 3631 . 2 (𝑊𝑉 → (𝑊 ∈ Archi ↔ (⋘‘𝑊) = ∅))
4 isarchi.b . . . 4 𝐵 = (Base‘𝑊)
54inftmrel 33141 . . 3 (𝑊𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵))
6 ss0b 4346 . . . . 5 ((⋘‘𝑊) ⊆ ∅ ↔ (⋘‘𝑊) = ∅)
7 ssrel2 5720 . . . . 5 ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) ⊆ ∅ ↔ ∀𝑥𝐵𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅)))
86, 7bitr3id 285 . . . 4 ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥𝐵𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅)))
9 noel 4283 . . . . . . . 8 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
109nbn 372 . . . . . . 7 (¬ ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
11 isarchi.i . . . . . . . . 9 < = (⋘‘𝑊)
1211breqi 5092 . . . . . . . 8 (𝑥 < 𝑦𝑥(⋘‘𝑊)𝑦)
13 df-br 5087 . . . . . . . 8 (𝑥(⋘‘𝑊)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊))
1412, 13bitri 275 . . . . . . 7 (𝑥 < 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊))
1510, 14xchnxbir 333 . . . . . 6 𝑥 < 𝑦 ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
169pm2.21i 119 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ∅ → ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊))
17 dfbi2 474 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) ↔ ((⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅) ∧ (⟨𝑥, 𝑦⟩ ∈ ∅ → ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊))))
1816, 17mpbiran2 710 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅))
1915, 18bitri 275 . . . . 5 𝑥 < 𝑦 ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅))
20192ralbii 3107 . . . 4 (∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦 ↔ ∀𝑥𝐵𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅))
218, 20bitr4di 289 . . 3 ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦))
225, 21syl 17 . 2 (𝑊𝑉 → ((⋘‘𝑊) = ∅ ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦))
233, 22bitrd 279 1 (𝑊𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047  wss 3897  c0 4278  cop 4577   class class class wbr 5086   × cxp 5609  cfv 6476  Basecbs 17115  0gc0g 17338  cinftm 33137  Archicarchi 33138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-inftm 33139  df-archi 33140
This theorem is referenced by:  xrnarchi  33145  isarchi2  33146
  Copyright terms: Public domain W3C validator