Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isarchi | Structured version Visualization version GIF version |
Description: Express the predicate "𝑊 is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
isarchi.b | ⊢ 𝐵 = (Base‘𝑊) |
isarchi.0 | ⊢ 0 = (0g‘𝑊) |
isarchi.i | ⊢ < = (⋘‘𝑊) |
Ref | Expression |
---|---|
isarchi | ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6783 | . . 3 ⊢ (𝑤 = 𝑊 → ((⋘‘𝑤) = ∅ ↔ (⋘‘𝑊) = ∅)) | |
2 | df-archi 31433 | . . 3 ⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} | |
3 | 1, 2 | elab2g 3611 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ (⋘‘𝑊) = ∅)) |
4 | isarchi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
5 | 4 | inftmrel 31434 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵)) |
6 | ss0b 4331 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ ∅ ↔ (⋘‘𝑊) = ∅) | |
7 | ssrel2 5696 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) ⊆ ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅))) | |
8 | 6, 7 | bitr3id 285 | . . . 4 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅))) |
9 | noel 4264 | . . . . . . . 8 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
10 | 9 | nbn 373 | . . . . . . 7 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
11 | isarchi.i | . . . . . . . . 9 ⊢ < = (⋘‘𝑊) | |
12 | 11 | breqi 5080 | . . . . . . . 8 ⊢ (𝑥 < 𝑦 ↔ 𝑥(⋘‘𝑊)𝑦) |
13 | df-br 5075 | . . . . . . . 8 ⊢ (𝑥(⋘‘𝑊)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) | |
14 | 12, 13 | bitri 274 | . . . . . . 7 ⊢ (𝑥 < 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) |
15 | 10, 14 | xchnxbir 333 | . . . . . 6 ⊢ (¬ 𝑥 < 𝑦 ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
16 | 9 | pm2.21i 119 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) |
17 | dfbi2 475 | . . . . . . 7 ⊢ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅) ∧ (〈𝑥, 𝑦〉 ∈ ∅ → 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)))) | |
18 | 16, 17 | mpbiran2 707 | . . . . . 6 ⊢ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
19 | 15, 18 | bitri 274 | . . . . 5 ⊢ (¬ 𝑥 < 𝑦 ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
20 | 19 | 2ralbii 3093 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
21 | 8, 20 | bitr4di 289 | . . 3 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
22 | 5, 21 | syl 17 | . 2 ⊢ (𝑊 ∈ 𝑉 → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
23 | 3, 22 | bitrd 278 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ∅c0 4256 〈cop 4567 class class class wbr 5074 × cxp 5587 ‘cfv 6433 Basecbs 16912 0gc0g 17150 ⋘cinftm 31430 Archicarchi 31431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-inftm 31432 df-archi 31433 |
This theorem is referenced by: xrnarchi 31438 isarchi2 31439 |
Copyright terms: Public domain | W3C validator |