![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isarchi | Structured version Visualization version GIF version |
Description: Express the predicate "𝑊 is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
isarchi.b | ⊢ 𝐵 = (Base‘𝑊) |
isarchi.0 | ⊢ 0 = (0g‘𝑊) |
isarchi.i | ⊢ < = (⋘‘𝑊) |
Ref | Expression |
---|---|
isarchi | ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6848 | . . 3 ⊢ (𝑤 = 𝑊 → ((⋘‘𝑤) = ∅ ↔ (⋘‘𝑊) = ∅)) | |
2 | df-archi 31841 | . . 3 ⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} | |
3 | 1, 2 | elab2g 3630 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ (⋘‘𝑊) = ∅)) |
4 | isarchi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
5 | 4 | inftmrel 31842 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵)) |
6 | ss0b 4355 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ ∅ ↔ (⋘‘𝑊) = ∅) | |
7 | ssrel2 5739 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) ⊆ ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅))) | |
8 | 6, 7 | bitr3id 284 | . . . 4 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅))) |
9 | noel 4288 | . . . . . . . 8 ⊢ ¬ ⟨𝑥, 𝑦⟩ ∈ ∅ | |
10 | 9 | nbn 372 | . . . . . . 7 ⊢ (¬ ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)) |
11 | isarchi.i | . . . . . . . . 9 ⊢ < = (⋘‘𝑊) | |
12 | 11 | breqi 5109 | . . . . . . . 8 ⊢ (𝑥 < 𝑦 ↔ 𝑥(⋘‘𝑊)𝑦) |
13 | df-br 5104 | . . . . . . . 8 ⊢ (𝑥(⋘‘𝑊)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊)) | |
14 | 12, 13 | bitri 274 | . . . . . . 7 ⊢ (𝑥 < 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊)) |
15 | 10, 14 | xchnxbir 332 | . . . . . 6 ⊢ (¬ 𝑥 < 𝑦 ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)) |
16 | 9 | pm2.21i 119 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ ∈ ∅ → ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊)) |
17 | dfbi2 475 | . . . . . . 7 ⊢ ((⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) ↔ ((⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅) ∧ (⟨𝑥, 𝑦⟩ ∈ ∅ → ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊)))) | |
18 | 16, 17 | mpbiran2 708 | . . . . . 6 ⊢ ((⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅)) |
19 | 15, 18 | bitri 274 | . . . . 5 ⊢ (¬ 𝑥 < 𝑦 ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅)) |
20 | 19 | 2ralbii 3125 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅)) |
21 | 8, 20 | bitr4di 288 | . . 3 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
22 | 5, 21 | syl 17 | . 2 ⊢ (𝑊 ∈ 𝑉 → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
23 | 3, 22 | bitrd 278 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ⊆ wss 3908 ∅c0 4280 ⟨cop 4590 class class class wbr 5103 × cxp 5629 ‘cfv 6493 Basecbs 17043 0gc0g 17281 ⋘cinftm 31838 Archicarchi 31839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5529 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6445 df-fun 6495 df-fv 6501 df-ov 7354 df-inftm 31840 df-archi 31841 |
This theorem is referenced by: xrnarchi 31846 isarchi2 31847 |
Copyright terms: Public domain | W3C validator |