Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isarchi | Structured version Visualization version GIF version |
Description: Express the predicate "𝑊 is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
isarchi.b | ⊢ 𝐵 = (Base‘𝑊) |
isarchi.0 | ⊢ 0 = (0g‘𝑊) |
isarchi.i | ⊢ < = (⋘‘𝑊) |
Ref | Expression |
---|---|
isarchi | ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6780 | . . 3 ⊢ (𝑤 = 𝑊 → ((⋘‘𝑤) = ∅ ↔ (⋘‘𝑊) = ∅)) | |
2 | df-archi 31429 | . . 3 ⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} | |
3 | 1, 2 | elab2g 3613 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ (⋘‘𝑊) = ∅)) |
4 | isarchi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
5 | 4 | inftmrel 31430 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵)) |
6 | ss0b 4337 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ ∅ ↔ (⋘‘𝑊) = ∅) | |
7 | ssrel2 5695 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) ⊆ ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅))) | |
8 | 6, 7 | bitr3id 285 | . . . 4 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅))) |
9 | noel 4270 | . . . . . . . 8 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
10 | 9 | nbn 373 | . . . . . . 7 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
11 | isarchi.i | . . . . . . . . 9 ⊢ < = (⋘‘𝑊) | |
12 | 11 | breqi 5085 | . . . . . . . 8 ⊢ (𝑥 < 𝑦 ↔ 𝑥(⋘‘𝑊)𝑦) |
13 | df-br 5080 | . . . . . . . 8 ⊢ (𝑥(⋘‘𝑊)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) | |
14 | 12, 13 | bitri 274 | . . . . . . 7 ⊢ (𝑥 < 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) |
15 | 10, 14 | xchnxbir 333 | . . . . . 6 ⊢ (¬ 𝑥 < 𝑦 ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
16 | 9 | pm2.21i 119 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) |
17 | dfbi2 475 | . . . . . . 7 ⊢ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅) ∧ (〈𝑥, 𝑦〉 ∈ ∅ → 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)))) | |
18 | 16, 17 | mpbiran2 707 | . . . . . 6 ⊢ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
19 | 15, 18 | bitri 274 | . . . . 5 ⊢ (¬ 𝑥 < 𝑦 ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
20 | 19 | 2ralbii 3094 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
21 | 8, 20 | bitr4di 289 | . . 3 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
22 | 5, 21 | syl 17 | . 2 ⊢ (𝑊 ∈ 𝑉 → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
23 | 3, 22 | bitrd 278 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ⊆ wss 3892 ∅c0 4262 〈cop 4573 class class class wbr 5079 × cxp 5588 ‘cfv 6432 Basecbs 16910 0gc0g 17148 ⋘cinftm 31426 Archicarchi 31427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7274 df-inftm 31428 df-archi 31429 |
This theorem is referenced by: xrnarchi 31434 isarchi2 31435 |
Copyright terms: Public domain | W3C validator |