Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi Structured version   Visualization version   GIF version

Theorem isarchi 30871
 Description: Express the predicate "𝑊 is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi.b 𝐵 = (Base‘𝑊)
isarchi.0 0 = (0g𝑊)
isarchi.i < = (⋘‘𝑊)
Assertion
Ref Expression
isarchi (𝑊𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑊,𝑦
Allowed substitution hints:   < (𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isarchi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6655 . . 3 (𝑤 = 𝑊 → ((⋘‘𝑤) = ∅ ↔ (⋘‘𝑊) = ∅))
2 df-archi 30868 . . 3 Archi = {𝑤 ∣ (⋘‘𝑤) = ∅}
31, 2elab2g 3616 . 2 (𝑊𝑉 → (𝑊 ∈ Archi ↔ (⋘‘𝑊) = ∅))
4 isarchi.b . . . 4 𝐵 = (Base‘𝑊)
54inftmrel 30869 . . 3 (𝑊𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵))
6 ss0b 4305 . . . . 5 ((⋘‘𝑊) ⊆ ∅ ↔ (⋘‘𝑊) = ∅)
7 ssrel2 5624 . . . . 5 ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) ⊆ ∅ ↔ ∀𝑥𝐵𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅)))
86, 7bitr3id 288 . . . 4 ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥𝐵𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅)))
9 noel 4247 . . . . . . . 8 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
109nbn 376 . . . . . . 7 (¬ ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
11 isarchi.i . . . . . . . . 9 < = (⋘‘𝑊)
1211breqi 5037 . . . . . . . 8 (𝑥 < 𝑦𝑥(⋘‘𝑊)𝑦)
13 df-br 5032 . . . . . . . 8 (𝑥(⋘‘𝑊)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊))
1412, 13bitri 278 . . . . . . 7 (𝑥 < 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊))
1510, 14xchnxbir 336 . . . . . 6 𝑥 < 𝑦 ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
169pm2.21i 119 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ∅ → ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊))
17 dfbi2 478 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) ↔ ((⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅) ∧ (⟨𝑥, 𝑦⟩ ∈ ∅ → ⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊))))
1816, 17mpbiran2 709 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅))
1915, 18bitri 278 . . . . 5 𝑥 < 𝑦 ↔ (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅))
20192ralbii 3134 . . . 4 (∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦 ↔ ∀𝑥𝐵𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ (⋘‘𝑊) → ⟨𝑥, 𝑦⟩ ∈ ∅))
218, 20bitr4di 292 . . 3 ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦))
225, 21syl 17 . 2 (𝑊𝑉 → ((⋘‘𝑊) = ∅ ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦))
233, 22bitrd 282 1 (𝑊𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥 < 𝑦))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  ∀wral 3106   ⊆ wss 3881  ∅c0 4243  ⟨cop 4531   class class class wbr 5031   × cxp 5518  ‘cfv 6325  Basecbs 16478  0gc0g 16708  ⋘cinftm 30865  Archicarchi 30866 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-iota 6284  df-fun 6327  df-fv 6333  df-ov 7139  df-inftm 30867  df-archi 30868 This theorem is referenced by:  xrnarchi  30873  isarchi2  30874
 Copyright terms: Public domain W3C validator