Detailed syntax breakdown of Definition df-inftm
| Step | Hyp | Ref
| Expression |
| 1 | | cinftm 33183 |
. 2
class
⋘ |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 6 | 2 | cv 1539 |
. . . . . . . 8
class 𝑤 |
| 7 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . . . . 7
class
(Base‘𝑤) |
| 9 | 5, 8 | wcel 2108 |
. . . . . 6
wff 𝑥 ∈ (Base‘𝑤) |
| 10 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 12 | 11, 8 | wcel 2108 |
. . . . . 6
wff 𝑦 ∈ (Base‘𝑤) |
| 13 | 9, 12 | wa 395 |
. . . . 5
wff (𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) |
| 14 | | c0g 17484 |
. . . . . . . 8
class
0g |
| 15 | 6, 14 | cfv 6561 |
. . . . . . 7
class
(0g‘𝑤) |
| 16 | | cplt 18354 |
. . . . . . . 8
class
lt |
| 17 | 6, 16 | cfv 6561 |
. . . . . . 7
class
(lt‘𝑤) |
| 18 | 15, 5, 17 | wbr 5143 |
. . . . . 6
wff
(0g‘𝑤)(lt‘𝑤)𝑥 |
| 19 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
| 20 | 19 | cv 1539 |
. . . . . . . . 9
class 𝑛 |
| 21 | | cmg 19085 |
. . . . . . . . . 10
class
.g |
| 22 | 6, 21 | cfv 6561 |
. . . . . . . . 9
class
(.g‘𝑤) |
| 23 | 20, 5, 22 | co 7431 |
. . . . . . . 8
class (𝑛(.g‘𝑤)𝑥) |
| 24 | 23, 11, 17 | wbr 5143 |
. . . . . . 7
wff (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦 |
| 25 | | cn 12266 |
. . . . . . 7
class
ℕ |
| 26 | 24, 19, 25 | wral 3061 |
. . . . . 6
wff
∀𝑛 ∈
ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦 |
| 27 | 18, 26 | wa 395 |
. . . . 5
wff
((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦) |
| 28 | 13, 27 | wa 395 |
. . . 4
wff ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦)) |
| 29 | 28, 4, 10 | copab 5205 |
. . 3
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦))} |
| 30 | 2, 3, 29 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦))}) |
| 31 | 1, 30 | wceq 1540 |
1
wff ⋘ =
(𝑤 ∈ V ↦
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦))}) |