Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inftmrel Structured version   Visualization version   GIF version

Theorem inftmrel 33160
Description: The infinitesimal relation for a structure 𝑊. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypothesis
Ref Expression
inftm.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
inftmrel (𝑊𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵))

Proof of Theorem inftmrel
Dummy variables 𝑥 𝑤 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3509 . . 3 (𝑊𝑉𝑊 ∈ V)
2 fveq2 6920 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 inftm.b . . . . . . . . 9 𝐵 = (Base‘𝑊)
42, 3eqtr4di 2798 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
54eleq2d 2830 . . . . . . 7 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥𝐵))
64eleq2d 2830 . . . . . . 7 (𝑤 = 𝑊 → (𝑦 ∈ (Base‘𝑤) ↔ 𝑦𝐵))
75, 6anbi12d 631 . . . . . 6 (𝑤 = 𝑊 → ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ↔ (𝑥𝐵𝑦𝐵)))
8 fveq2 6920 . . . . . . . 8 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
9 fveq2 6920 . . . . . . . 8 (𝑤 = 𝑊 → (lt‘𝑤) = (lt‘𝑊))
10 eqidd 2741 . . . . . . . 8 (𝑤 = 𝑊𝑥 = 𝑥)
118, 9, 10breq123d 5180 . . . . . . 7 (𝑤 = 𝑊 → ((0g𝑤)(lt‘𝑤)𝑥 ↔ (0g𝑊)(lt‘𝑊)𝑥))
12 fveq2 6920 . . . . . . . . . 10 (𝑤 = 𝑊 → (.g𝑤) = (.g𝑊))
1312oveqd 7465 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑛(.g𝑤)𝑥) = (𝑛(.g𝑊)𝑥))
14 eqidd 2741 . . . . . . . . 9 (𝑤 = 𝑊𝑦 = 𝑦)
1513, 9, 14breq123d 5180 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦 ↔ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))
1615ralbidv 3184 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦 ↔ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))
1711, 16anbi12d 631 . . . . . 6 (𝑤 = 𝑊 → (((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦) ↔ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦)))
187, 17anbi12d 631 . . . . 5 (𝑤 = 𝑊 → (((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))))
1918opabbidv 5232 . . . 4 (𝑤 = 𝑊 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))})
20 df-inftm 33158 . . . 4 ⋘ = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))})
213fvexi 6934 . . . . . 6 𝐵 ∈ V
2221, 21xpex 7788 . . . . 5 (𝐵 × 𝐵) ∈ V
23 opabssxp 5792 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))} ⊆ (𝐵 × 𝐵)
2422, 23ssexi 5340 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))} ∈ V
2519, 20, 24fvmpt 7029 . . 3 (𝑊 ∈ V → (⋘‘𝑊) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))})
261, 25syl 17 . 2 (𝑊𝑉 → (⋘‘𝑊) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))})
2726, 23eqsstrdi 4063 1 (𝑊𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976   class class class wbr 5166  {copab 5228   × cxp 5698  cfv 6573  (class class class)co 7448  cn 12293  Basecbs 17258  0gc0g 17499  ltcplt 18378  .gcmg 19107  cinftm 33156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-inftm 33158
This theorem is referenced by:  isarchi  33162
  Copyright terms: Public domain W3C validator