Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inftmrel Structured version   Visualization version   GIF version

Theorem inftmrel 31434
Description: The infinitesimal relation for a structure 𝑊. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypothesis
Ref Expression
inftm.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
inftmrel (𝑊𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵))

Proof of Theorem inftmrel
Dummy variables 𝑥 𝑤 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . . 3 (𝑊𝑉𝑊 ∈ V)
2 fveq2 6774 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 inftm.b . . . . . . . . 9 𝐵 = (Base‘𝑊)
42, 3eqtr4di 2796 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
54eleq2d 2824 . . . . . . 7 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥𝐵))
64eleq2d 2824 . . . . . . 7 (𝑤 = 𝑊 → (𝑦 ∈ (Base‘𝑤) ↔ 𝑦𝐵))
75, 6anbi12d 631 . . . . . 6 (𝑤 = 𝑊 → ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ↔ (𝑥𝐵𝑦𝐵)))
8 fveq2 6774 . . . . . . . 8 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
9 fveq2 6774 . . . . . . . 8 (𝑤 = 𝑊 → (lt‘𝑤) = (lt‘𝑊))
10 eqidd 2739 . . . . . . . 8 (𝑤 = 𝑊𝑥 = 𝑥)
118, 9, 10breq123d 5088 . . . . . . 7 (𝑤 = 𝑊 → ((0g𝑤)(lt‘𝑤)𝑥 ↔ (0g𝑊)(lt‘𝑊)𝑥))
12 fveq2 6774 . . . . . . . . . 10 (𝑤 = 𝑊 → (.g𝑤) = (.g𝑊))
1312oveqd 7292 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑛(.g𝑤)𝑥) = (𝑛(.g𝑊)𝑥))
14 eqidd 2739 . . . . . . . . 9 (𝑤 = 𝑊𝑦 = 𝑦)
1513, 9, 14breq123d 5088 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦 ↔ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))
1615ralbidv 3112 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦 ↔ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))
1711, 16anbi12d 631 . . . . . 6 (𝑤 = 𝑊 → (((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦) ↔ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦)))
187, 17anbi12d 631 . . . . 5 (𝑤 = 𝑊 → (((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))))
1918opabbidv 5140 . . . 4 (𝑤 = 𝑊 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))})
20 df-inftm 31432 . . . 4 ⋘ = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))})
213fvexi 6788 . . . . . 6 𝐵 ∈ V
2221, 21xpex 7603 . . . . 5 (𝐵 × 𝐵) ∈ V
23 opabssxp 5679 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))} ⊆ (𝐵 × 𝐵)
2422, 23ssexi 5246 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))} ∈ V
2519, 20, 24fvmpt 6875 . . 3 (𝑊 ∈ V → (⋘‘𝑊) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))})
261, 25syl 17 . 2 (𝑊𝑉 → (⋘‘𝑊) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ((0g𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑊)𝑥)(lt‘𝑊)𝑦))})
2726, 23eqsstrdi 3975 1 (𝑊𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074  {copab 5136   × cxp 5587  cfv 6433  (class class class)co 7275  cn 11973  Basecbs 16912  0gc0g 17150  ltcplt 18026  .gcmg 18700  cinftm 31430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-inftm 31432
This theorem is referenced by:  isarchi  31436
  Copyright terms: Public domain W3C validator