![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intopval | Structured version Visualization version GIF version |
Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
intopval | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-intop 46219 | . . 3 ⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚)))) |
3 | simpr 486 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | |
4 | simpl 484 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑚 = 𝑀) | |
5 | 4 | sqxpeqd 5666 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
6 | 3, 5 | oveq12d 7376 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑛 ↑m (𝑚 × 𝑚)) = (𝑁 ↑m (𝑀 × 𝑀))) |
7 | 6 | adantl 483 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁)) → (𝑛 ↑m (𝑚 × 𝑚)) = (𝑁 ↑m (𝑀 × 𝑀))) |
8 | elex 3462 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
9 | 8 | adantr 482 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑀 ∈ V) |
10 | elex 3462 | . . 3 ⊢ (𝑁 ∈ 𝑊 → 𝑁 ∈ V) | |
11 | 10 | adantl 483 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑁 ∈ V) |
12 | ovexd 7393 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑁 ↑m (𝑀 × 𝑀)) ∈ V) | |
13 | 2, 7, 9, 11, 12 | ovmpod 7508 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3444 × cxp 5632 (class class class)co 7358 ∈ cmpo 7360 ↑m cmap 8768 intOp cintop 46216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-iota 6449 df-fun 6499 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-intop 46219 |
This theorem is referenced by: intop 46223 clintopval 46224 |
Copyright terms: Public domain | W3C validator |