![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intopval | Structured version Visualization version GIF version |
Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
intopval | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑𝑚 (𝑀 × 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-intop 42696 | . . 3 ⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑𝑚 (𝑚 × 𝑚))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑𝑚 (𝑚 × 𝑚)))) |
3 | simpr 479 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | |
4 | simpl 476 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑚 = 𝑀) | |
5 | 4 | sqxpeqd 5378 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
6 | 3, 5 | oveq12d 6928 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑛 ↑𝑚 (𝑚 × 𝑚)) = (𝑁 ↑𝑚 (𝑀 × 𝑀))) |
7 | 6 | adantl 475 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁)) → (𝑛 ↑𝑚 (𝑚 × 𝑚)) = (𝑁 ↑𝑚 (𝑀 × 𝑀))) |
8 | elex 3429 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
9 | 8 | adantr 474 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑀 ∈ V) |
10 | elex 3429 | . . 3 ⊢ (𝑁 ∈ 𝑊 → 𝑁 ∈ V) | |
11 | 10 | adantl 475 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑁 ∈ V) |
12 | ovexd 6944 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑁 ↑𝑚 (𝑀 × 𝑀)) ∈ V) | |
13 | 2, 7, 9, 11, 12 | ovmpt2d 7053 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑𝑚 (𝑀 × 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Vcvv 3414 × cxp 5344 (class class class)co 6910 ↦ cmpt2 6912 ↑𝑚 cmap 8127 intOp cintop 42693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-intop 42696 |
This theorem is referenced by: intop 42700 clintopval 42701 |
Copyright terms: Public domain | W3C validator |