Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intopval Structured version   Visualization version   GIF version

Theorem intopval 45396
Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
intopval ((𝑀𝑉𝑁𝑊) → (𝑀 intOp 𝑁) = (𝑁m (𝑀 × 𝑀)))

Proof of Theorem intopval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-intop 45393 . . 3 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚)))
21a1i 11 . 2 ((𝑀𝑉𝑁𝑊) → intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚))))
3 simpr 485 . . . 4 ((𝑚 = 𝑀𝑛 = 𝑁) → 𝑛 = 𝑁)
4 simpl 483 . . . . 5 ((𝑚 = 𝑀𝑛 = 𝑁) → 𝑚 = 𝑀)
54sqxpeqd 5621 . . . 4 ((𝑚 = 𝑀𝑛 = 𝑁) → (𝑚 × 𝑚) = (𝑀 × 𝑀))
63, 5oveq12d 7293 . . 3 ((𝑚 = 𝑀𝑛 = 𝑁) → (𝑛m (𝑚 × 𝑚)) = (𝑁m (𝑀 × 𝑀)))
76adantl 482 . 2 (((𝑀𝑉𝑁𝑊) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → (𝑛m (𝑚 × 𝑚)) = (𝑁m (𝑀 × 𝑀)))
8 elex 3450 . . 3 (𝑀𝑉𝑀 ∈ V)
98adantr 481 . 2 ((𝑀𝑉𝑁𝑊) → 𝑀 ∈ V)
10 elex 3450 . . 3 (𝑁𝑊𝑁 ∈ V)
1110adantl 482 . 2 ((𝑀𝑉𝑁𝑊) → 𝑁 ∈ V)
12 ovexd 7310 . 2 ((𝑀𝑉𝑁𝑊) → (𝑁m (𝑀 × 𝑀)) ∈ V)
132, 7, 9, 11, 12ovmpod 7425 1 ((𝑀𝑉𝑁𝑊) → (𝑀 intOp 𝑁) = (𝑁m (𝑀 × 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   × cxp 5587  (class class class)co 7275  cmpo 7277  m cmap 8615   intOp cintop 45390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-intop 45393
This theorem is referenced by:  intop  45397  clintopval  45398
  Copyright terms: Public domain W3C validator