Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intopval Structured version   Visualization version   GIF version

Theorem intopval 45284
Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
intopval ((𝑀𝑉𝑁𝑊) → (𝑀 intOp 𝑁) = (𝑁m (𝑀 × 𝑀)))

Proof of Theorem intopval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-intop 45281 . . 3 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚)))
21a1i 11 . 2 ((𝑀𝑉𝑁𝑊) → intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚))))
3 simpr 484 . . . 4 ((𝑚 = 𝑀𝑛 = 𝑁) → 𝑛 = 𝑁)
4 simpl 482 . . . . 5 ((𝑚 = 𝑀𝑛 = 𝑁) → 𝑚 = 𝑀)
54sqxpeqd 5612 . . . 4 ((𝑚 = 𝑀𝑛 = 𝑁) → (𝑚 × 𝑚) = (𝑀 × 𝑀))
63, 5oveq12d 7273 . . 3 ((𝑚 = 𝑀𝑛 = 𝑁) → (𝑛m (𝑚 × 𝑚)) = (𝑁m (𝑀 × 𝑀)))
76adantl 481 . 2 (((𝑀𝑉𝑁𝑊) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → (𝑛m (𝑚 × 𝑚)) = (𝑁m (𝑀 × 𝑀)))
8 elex 3440 . . 3 (𝑀𝑉𝑀 ∈ V)
98adantr 480 . 2 ((𝑀𝑉𝑁𝑊) → 𝑀 ∈ V)
10 elex 3440 . . 3 (𝑁𝑊𝑁 ∈ V)
1110adantl 481 . 2 ((𝑀𝑉𝑁𝑊) → 𝑁 ∈ V)
12 ovexd 7290 . 2 ((𝑀𝑉𝑁𝑊) → (𝑁m (𝑀 × 𝑀)) ∈ V)
132, 7, 9, 11, 12ovmpod 7403 1 ((𝑀𝑉𝑁𝑊) → (𝑀 intOp 𝑁) = (𝑁m (𝑀 × 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   × cxp 5578  (class class class)co 7255  cmpo 7257  m cmap 8573   intOp cintop 45278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-intop 45281
This theorem is referenced by:  intop  45285  clintopval  45286
  Copyright terms: Public domain W3C validator