Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intopval Structured version   Visualization version   GIF version

Theorem intopval 48194
Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
intopval ((𝑀𝑉𝑁𝑊) → (𝑀 intOp 𝑁) = (𝑁m (𝑀 × 𝑀)))

Proof of Theorem intopval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-intop 48191 . . 3 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚)))
21a1i 11 . 2 ((𝑀𝑉𝑁𝑊) → intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚))))
3 simpr 484 . . . 4 ((𝑚 = 𝑀𝑛 = 𝑁) → 𝑛 = 𝑁)
4 simpl 482 . . . . 5 ((𝑚 = 𝑀𝑛 = 𝑁) → 𝑚 = 𝑀)
54sqxpeqd 5673 . . . 4 ((𝑚 = 𝑀𝑛 = 𝑁) → (𝑚 × 𝑚) = (𝑀 × 𝑀))
63, 5oveq12d 7408 . . 3 ((𝑚 = 𝑀𝑛 = 𝑁) → (𝑛m (𝑚 × 𝑚)) = (𝑁m (𝑀 × 𝑀)))
76adantl 481 . 2 (((𝑀𝑉𝑁𝑊) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → (𝑛m (𝑚 × 𝑚)) = (𝑁m (𝑀 × 𝑀)))
8 elex 3471 . . 3 (𝑀𝑉𝑀 ∈ V)
98adantr 480 . 2 ((𝑀𝑉𝑁𝑊) → 𝑀 ∈ V)
10 elex 3471 . . 3 (𝑁𝑊𝑁 ∈ V)
1110adantl 481 . 2 ((𝑀𝑉𝑁𝑊) → 𝑁 ∈ V)
12 ovexd 7425 . 2 ((𝑀𝑉𝑁𝑊) → (𝑁m (𝑀 × 𝑀)) ∈ V)
132, 7, 9, 11, 12ovmpod 7544 1 ((𝑀𝑉𝑁𝑊) → (𝑀 intOp 𝑁) = (𝑁m (𝑀 × 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   × cxp 5639  (class class class)co 7390  cmpo 7392  m cmap 8802   intOp cintop 48188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-intop 48191
This theorem is referenced by:  intop  48195  clintopval  48196
  Copyright terms: Public domain W3C validator