| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intopval | Structured version Visualization version GIF version | ||
| Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| intopval | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-intop 48187 | . . 3 ⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚)))) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | |
| 4 | simpl 482 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑚 = 𝑀) | |
| 5 | 4 | sqxpeqd 5670 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
| 6 | 3, 5 | oveq12d 7405 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑛 ↑m (𝑚 × 𝑚)) = (𝑁 ↑m (𝑀 × 𝑀))) |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁)) → (𝑛 ↑m (𝑚 × 𝑚)) = (𝑁 ↑m (𝑀 × 𝑀))) |
| 8 | elex 3468 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑀 ∈ V) |
| 10 | elex 3468 | . . 3 ⊢ (𝑁 ∈ 𝑊 → 𝑁 ∈ V) | |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑁 ∈ V) |
| 12 | ovexd 7422 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑁 ↑m (𝑀 × 𝑀)) ∈ V) | |
| 13 | 2, 7, 9, 11, 12 | ovmpod 7541 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 × cxp 5636 (class class class)co 7387 ∈ cmpo 7389 ↑m cmap 8799 intOp cintop 48184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-intop 48187 |
| This theorem is referenced by: intop 48191 clintopval 48192 |
| Copyright terms: Public domain | W3C validator |