![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intopval | Structured version Visualization version GIF version |
Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
intopval | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-intop 47922 | . . 3 ⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚)))) |
3 | simpr 484 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | |
4 | simpl 482 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑚 = 𝑀) | |
5 | 4 | sqxpeqd 5732 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
6 | 3, 5 | oveq12d 7466 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑛 ↑m (𝑚 × 𝑚)) = (𝑁 ↑m (𝑀 × 𝑀))) |
7 | 6 | adantl 481 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁)) → (𝑛 ↑m (𝑚 × 𝑚)) = (𝑁 ↑m (𝑀 × 𝑀))) |
8 | elex 3509 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
9 | 8 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑀 ∈ V) |
10 | elex 3509 | . . 3 ⊢ (𝑁 ∈ 𝑊 → 𝑁 ∈ V) | |
11 | 10 | adantl 481 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑁 ∈ V) |
12 | ovexd 7483 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑁 ↑m (𝑀 × 𝑀)) ∈ V) | |
13 | 2, 7, 9, 11, 12 | ovmpod 7602 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 × cxp 5698 (class class class)co 7448 ∈ cmpo 7450 ↑m cmap 8884 intOp cintop 47919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-intop 47922 |
This theorem is referenced by: intop 47926 clintopval 47927 |
Copyright terms: Public domain | W3C validator |