| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopval | Structured version Visualization version GIF version | ||
| Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| assintopval | ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-assintop 48189 | . 2 ⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) | |
| 2 | fveq2 6858 | . . 3 ⊢ (𝑚 = 𝑀 → ( clIntOp ‘𝑚) = ( clIntOp ‘𝑀)) | |
| 3 | breq2 5111 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑜 assLaw 𝑚 ↔ 𝑜 assLaw 𝑀)) | |
| 4 | 2, 3 | rabeqbidv 3424 | . 2 ⊢ (𝑚 = 𝑀 → {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
| 5 | elex 3468 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
| 6 | fvex 6871 | . . . 4 ⊢ ( clIntOp ‘𝑀) ∈ V | |
| 7 | 6 | rabex 5294 | . . 3 ⊢ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝑀 ∈ 𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 6991 | 1 ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 class class class wbr 5107 ‘cfv 6511 assLaw casslaw 48172 clIntOp cclintop 48185 assIntOp cassintop 48186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-assintop 48189 |
| This theorem is referenced by: assintopmap 48194 isassintop 48198 assintopcllaw 48200 |
| Copyright terms: Public domain | W3C validator |