Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopval Structured version   Visualization version   GIF version

Theorem assintopval 48049
Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopval (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
Distinct variable group:   𝑜,𝑀
Allowed substitution hint:   𝑉(𝑜)

Proof of Theorem assintopval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-assintop 48045 . 2 assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚})
2 fveq2 6907 . . 3 (𝑚 = 𝑀 → ( clIntOp ‘𝑚) = ( clIntOp ‘𝑀))
3 breq2 5152 . . 3 (𝑚 = 𝑀 → (𝑜 assLaw 𝑚𝑜 assLaw 𝑀))
42, 3rabeqbidv 3452 . 2 (𝑚 = 𝑀 → {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
5 elex 3499 . 2 (𝑀𝑉𝑀 ∈ V)
6 fvex 6920 . . . 4 ( clIntOp ‘𝑀) ∈ V
76rabex 5345 . . 3 {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V
87a1i 11 . 2 (𝑀𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V)
91, 4, 5, 8fvmptd3 7039 1 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478   class class class wbr 5148  cfv 6563   assLaw casslaw 48028   clIntOp cclintop 48041   assIntOp cassintop 48042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-assintop 48045
This theorem is referenced by:  assintopmap  48050  isassintop  48054  assintopcllaw  48056
  Copyright terms: Public domain W3C validator