![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopval | Structured version Visualization version GIF version |
Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintopval | ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-assintop 47924 | . 2 ⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) | |
2 | fveq2 6920 | . . 3 ⊢ (𝑚 = 𝑀 → ( clIntOp ‘𝑚) = ( clIntOp ‘𝑀)) | |
3 | breq2 5170 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑜 assLaw 𝑚 ↔ 𝑜 assLaw 𝑀)) | |
4 | 2, 3 | rabeqbidv 3462 | . 2 ⊢ (𝑚 = 𝑀 → {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
5 | elex 3509 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
6 | fvex 6933 | . . . 4 ⊢ ( clIntOp ‘𝑀) ∈ V | |
7 | 6 | rabex 5357 | . . 3 ⊢ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V |
8 | 7 | a1i 11 | . 2 ⊢ (𝑀 ∈ 𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V) |
9 | 1, 4, 5, 8 | fvmptd3 7052 | 1 ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 class class class wbr 5166 ‘cfv 6573 assLaw casslaw 47907 clIntOp cclintop 47920 assIntOp cassintop 47921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-assintop 47924 |
This theorem is referenced by: assintopmap 47929 isassintop 47933 assintopcllaw 47935 |
Copyright terms: Public domain | W3C validator |