Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopval Structured version   Visualization version   GIF version

Theorem assintopval 45360
Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopval (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
Distinct variable group:   𝑜,𝑀
Allowed substitution hint:   𝑉(𝑜)

Proof of Theorem assintopval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-assintop 45356 . 2 assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚})
2 fveq2 6769 . . 3 (𝑚 = 𝑀 → ( clIntOp ‘𝑚) = ( clIntOp ‘𝑀))
3 breq2 5083 . . 3 (𝑚 = 𝑀 → (𝑜 assLaw 𝑚𝑜 assLaw 𝑀))
42, 3rabeqbidv 3419 . 2 (𝑚 = 𝑀 → {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
5 elex 3449 . 2 (𝑀𝑉𝑀 ∈ V)
6 fvex 6782 . . . 4 ( clIntOp ‘𝑀) ∈ V
76rabex 5260 . . 3 {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V
87a1i 11 . 2 (𝑀𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V)
91, 4, 5, 8fvmptd3 6893 1 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {crab 3070  Vcvv 3431   class class class wbr 5079  cfv 6431   assLaw casslaw 45339   clIntOp cclintop 45352   assIntOp cassintop 45353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6389  df-fun 6433  df-fv 6439  df-assintop 45356
This theorem is referenced by:  assintopmap  45361  isassintop  45365  assintopcllaw  45367
  Copyright terms: Public domain W3C validator