Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopval Structured version   Visualization version   GIF version

Theorem assintopval 48067
Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopval (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
Distinct variable group:   𝑜,𝑀
Allowed substitution hint:   𝑉(𝑜)

Proof of Theorem assintopval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-assintop 48063 . 2 assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚})
2 fveq2 6887 . . 3 (𝑚 = 𝑀 → ( clIntOp ‘𝑚) = ( clIntOp ‘𝑀))
3 breq2 5129 . . 3 (𝑚 = 𝑀 → (𝑜 assLaw 𝑚𝑜 assLaw 𝑀))
42, 3rabeqbidv 3439 . 2 (𝑚 = 𝑀 → {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
5 elex 3485 . 2 (𝑀𝑉𝑀 ∈ V)
6 fvex 6900 . . . 4 ( clIntOp ‘𝑀) ∈ V
76rabex 5321 . . 3 {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V
87a1i 11 . 2 (𝑀𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V)
91, 4, 5, 8fvmptd3 7020 1 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3420  Vcvv 3464   class class class wbr 5125  cfv 6542   assLaw casslaw 48046   clIntOp cclintop 48059   assIntOp cassintop 48060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-assintop 48063
This theorem is referenced by:  assintopmap  48068  isassintop  48072  assintopcllaw  48074
  Copyright terms: Public domain W3C validator