| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopval | Structured version Visualization version GIF version | ||
| Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| assintopval | ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-assintop 48063 | . 2 ⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) | |
| 2 | fveq2 6887 | . . 3 ⊢ (𝑚 = 𝑀 → ( clIntOp ‘𝑚) = ( clIntOp ‘𝑀)) | |
| 3 | breq2 5129 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑜 assLaw 𝑚 ↔ 𝑜 assLaw 𝑀)) | |
| 4 | 2, 3 | rabeqbidv 3439 | . 2 ⊢ (𝑚 = 𝑀 → {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
| 5 | elex 3485 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
| 6 | fvex 6900 | . . . 4 ⊢ ( clIntOp ‘𝑀) ∈ V | |
| 7 | 6 | rabex 5321 | . . 3 ⊢ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝑀 ∈ 𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 7020 | 1 ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3420 Vcvv 3464 class class class wbr 5125 ‘cfv 6542 assLaw casslaw 48046 clIntOp cclintop 48059 assIntOp cassintop 48060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-assintop 48063 |
| This theorem is referenced by: assintopmap 48068 isassintop 48072 assintopcllaw 48074 |
| Copyright terms: Public domain | W3C validator |