Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopval | Structured version Visualization version GIF version |
Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintopval | ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-assintop 45356 | . 2 ⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) | |
2 | fveq2 6769 | . . 3 ⊢ (𝑚 = 𝑀 → ( clIntOp ‘𝑚) = ( clIntOp ‘𝑀)) | |
3 | breq2 5083 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑜 assLaw 𝑚 ↔ 𝑜 assLaw 𝑀)) | |
4 | 2, 3 | rabeqbidv 3419 | . 2 ⊢ (𝑚 = 𝑀 → {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
5 | elex 3449 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
6 | fvex 6782 | . . . 4 ⊢ ( clIntOp ‘𝑀) ∈ V | |
7 | 6 | rabex 5260 | . . 3 ⊢ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V |
8 | 7 | a1i 11 | . 2 ⊢ (𝑀 ∈ 𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V) |
9 | 1, 4, 5, 8 | fvmptd3 6893 | 1 ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {crab 3070 Vcvv 3431 class class class wbr 5079 ‘cfv 6431 assLaw casslaw 45339 clIntOp cclintop 45352 assIntOp cassintop 45353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6389 df-fun 6433 df-fv 6439 df-assintop 45356 |
This theorem is referenced by: assintopmap 45361 isassintop 45365 assintopcllaw 45367 |
Copyright terms: Public domain | W3C validator |