Detailed syntax breakdown of Definition df-ats
| Step | Hyp | Ref
| Expression |
| 1 | | catm 39264 |
. 2
class
Atoms |
| 2 | | vp |
. . 3
setvar 𝑝 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | 2 | cv 1539 |
. . . . . 6
class 𝑝 |
| 5 | | cp0 18468 |
. . . . . 6
class
0. |
| 6 | 4, 5 | cfv 6561 |
. . . . 5
class
(0.‘𝑝) |
| 7 | | va |
. . . . . 6
setvar 𝑎 |
| 8 | 7 | cv 1539 |
. . . . 5
class 𝑎 |
| 9 | | ccvr 39263 |
. . . . . 6
class
⋖ |
| 10 | 4, 9 | cfv 6561 |
. . . . 5
class ( ⋖
‘𝑝) |
| 11 | 6, 8, 10 | wbr 5143 |
. . . 4
wff
(0.‘𝑝)(
⋖ ‘𝑝)𝑎 |
| 12 | | cbs 17247 |
. . . . 5
class
Base |
| 13 | 4, 12 | cfv 6561 |
. . . 4
class
(Base‘𝑝) |
| 14 | 11, 7, 13 | crab 3436 |
. . 3
class {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎} |
| 15 | 2, 3, 14 | cmpt 5225 |
. 2
class (𝑝 ∈ V ↦ {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎}) |
| 16 | 1, 15 | wceq 1540 |
1
wff Atoms =
(𝑝 ∈ V ↦ {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎}) |