Detailed syntax breakdown of Definition df-covers
Step | Hyp | Ref
| Expression |
1 | | ccvr 37203 |
. 2
class
⋖ |
2 | | vp |
. . 3
setvar 𝑝 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | va |
. . . . . . . 8
setvar 𝑎 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑎 |
6 | 2 | cv 1538 |
. . . . . . . 8
class 𝑝 |
7 | | cbs 16840 |
. . . . . . . 8
class
Base |
8 | 6, 7 | cfv 6418 |
. . . . . . 7
class
(Base‘𝑝) |
9 | 5, 8 | wcel 2108 |
. . . . . 6
wff 𝑎 ∈ (Base‘𝑝) |
10 | | vb |
. . . . . . . 8
setvar 𝑏 |
11 | 10 | cv 1538 |
. . . . . . 7
class 𝑏 |
12 | 11, 8 | wcel 2108 |
. . . . . 6
wff 𝑏 ∈ (Base‘𝑝) |
13 | 9, 12 | wa 395 |
. . . . 5
wff (𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) |
14 | | cplt 17941 |
. . . . . . 7
class
lt |
15 | 6, 14 | cfv 6418 |
. . . . . 6
class
(lt‘𝑝) |
16 | 5, 11, 15 | wbr 5070 |
. . . . 5
wff 𝑎(lt‘𝑝)𝑏 |
17 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
18 | 17 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
19 | 5, 18, 15 | wbr 5070 |
. . . . . . . 8
wff 𝑎(lt‘𝑝)𝑧 |
20 | 18, 11, 15 | wbr 5070 |
. . . . . . . 8
wff 𝑧(lt‘𝑝)𝑏 |
21 | 19, 20 | wa 395 |
. . . . . . 7
wff (𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏) |
22 | 21, 17, 8 | wrex 3064 |
. . . . . 6
wff
∃𝑧 ∈
(Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏) |
23 | 22 | wn 3 |
. . . . 5
wff ¬
∃𝑧 ∈
(Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏) |
24 | 13, 16, 23 | w3a 1085 |
. . . 4
wff ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏)) |
25 | 24, 4, 10 | copab 5132 |
. . 3
class
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏))} |
26 | 2, 3, 25 | cmpt 5153 |
. 2
class (𝑝 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏))}) |
27 | 1, 26 | wceq 1539 |
1
wff ⋖ =
(𝑝 ∈ V ↦
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏))}) |