Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrfval Structured version   Visualization version   GIF version

Theorem cvrfval 39306
Description: Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrfval (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   < (𝑥,𝑦,𝑧)

Proof of Theorem cvrfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐾𝐴𝐾 ∈ V)
2 cvrfval.c . . 3 𝐶 = ( ⋖ ‘𝐾)
3 fveq2 6822 . . . . . . . . 9 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 cvrfval.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2784 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65eleq2d 2817 . . . . . . 7 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝) ↔ 𝑥𝐵))
75eleq2d 2817 . . . . . . 7 (𝑝 = 𝐾 → (𝑦 ∈ (Base‘𝑝) ↔ 𝑦𝐵))
86, 7anbi12d 632 . . . . . 6 (𝑝 = 𝐾 → ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ↔ (𝑥𝐵𝑦𝐵)))
9 fveq2 6822 . . . . . . . 8 (𝑝 = 𝐾 → (lt‘𝑝) = (lt‘𝐾))
10 cvrfval.s . . . . . . . 8 < = (lt‘𝐾)
119, 10eqtr4di 2784 . . . . . . 7 (𝑝 = 𝐾 → (lt‘𝑝) = < )
1211breqd 5102 . . . . . 6 (𝑝 = 𝐾 → (𝑥(lt‘𝑝)𝑦𝑥 < 𝑦))
1311breqd 5102 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑥(lt‘𝑝)𝑧𝑥 < 𝑧))
1411breqd 5102 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑧(lt‘𝑝)𝑦𝑧 < 𝑦))
1513, 14anbi12d 632 . . . . . . . 8 (𝑝 = 𝐾 → ((𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦) ↔ (𝑥 < 𝑧𝑧 < 𝑦)))
165, 15rexeqbidv 3313 . . . . . . 7 (𝑝 = 𝐾 → (∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦) ↔ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))
1716notbid 318 . . . . . 6 (𝑝 = 𝐾 → (¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦) ↔ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))
188, 12, 173anbi123d 1438 . . . . 5 (𝑝 = 𝐾 → (((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
1918opabbidv 5157 . . . 4 (𝑝 = 𝐾 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
20 df-covers 39304 . . . 4 ⋖ = (𝑝 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦))})
21 3anass 1094 . . . . . 6 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
2221opabbii 5158 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}
234fvexi 6836 . . . . . . 7 𝐵 ∈ V
2423, 23xpex 7686 . . . . . 6 (𝐵 × 𝐵) ∈ V
25 opabssxp 5708 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ⊆ (𝐵 × 𝐵)
2624, 25ssexi 5260 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ∈ V
2722, 26eqeltri 2827 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} ∈ V
2819, 20, 27fvmpt 6929 . . 3 (𝐾 ∈ V → ( ⋖ ‘𝐾) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
292, 28eqtrid 2778 . 2 (𝐾 ∈ V → 𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
301, 29syl 17 1 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436   class class class wbr 5091  {copab 5153   × cxp 5614  cfv 6481  Basecbs 17117  ltcplt 18211  ccvr 39300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-covers 39304
This theorem is referenced by:  cvrval  39307
  Copyright terms: Public domain W3C validator