| Step | Hyp | Ref
| Expression |
| 1 | | elex 3501 |
. 2
⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) |
| 2 | | cvrfval.c |
. . 3
⊢ 𝐶 = ( ⋖ ‘𝐾) |
| 3 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) |
| 4 | | cvrfval.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
| 5 | 3, 4 | eqtr4di 2795 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
| 6 | 5 | eleq2d 2827 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝) ↔ 𝑥 ∈ 𝐵)) |
| 7 | 5 | eleq2d 2827 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (𝑦 ∈ (Base‘𝑝) ↔ 𝑦 ∈ 𝐵)) |
| 8 | 6, 7 | anbi12d 632 |
. . . . . 6
⊢ (𝑝 = 𝐾 → ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 9 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (lt‘𝑝) = (lt‘𝐾)) |
| 10 | | cvrfval.s |
. . . . . . . 8
⊢ < =
(lt‘𝐾) |
| 11 | 9, 10 | eqtr4di 2795 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (lt‘𝑝) = < ) |
| 12 | 11 | breqd 5154 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (𝑥(lt‘𝑝)𝑦 ↔ 𝑥 < 𝑦)) |
| 13 | 11 | breqd 5154 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → (𝑥(lt‘𝑝)𝑧 ↔ 𝑥 < 𝑧)) |
| 14 | 11 | breqd 5154 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → (𝑧(lt‘𝑝)𝑦 ↔ 𝑧 < 𝑦)) |
| 15 | 13, 14 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → ((𝑥(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑦) ↔ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))) |
| 16 | 5, 15 | rexeqbidv 3347 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑦) ↔ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))) |
| 17 | 16 | notbid 318 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑦) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))) |
| 18 | 8, 12, 17 | 3anbi123d 1438 |
. . . . 5
⊢ (𝑝 = 𝐾 → (((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑦)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))) |
| 19 | 18 | opabbidv 5209 |
. . . 4
⊢ (𝑝 = 𝐾 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))}) |
| 20 | | df-covers 39267 |
. . . 4
⊢ ⋖
= (𝑝 ∈ V ↦
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑦))}) |
| 21 | | 3anass 1095 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))) |
| 22 | 21 | opabbii 5210 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))} |
| 23 | 4 | fvexi 6920 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 24 | 23, 23 | xpex 7773 |
. . . . . 6
⊢ (𝐵 × 𝐵) ∈ V |
| 25 | | opabssxp 5778 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))} ⊆ (𝐵 × 𝐵) |
| 26 | 24, 25 | ssexi 5322 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))} ∈ V |
| 27 | 22, 26 | eqeltri 2837 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))} ∈ V |
| 28 | 19, 20, 27 | fvmpt 7016 |
. . 3
⊢ (𝐾 ∈ V → ( ⋖
‘𝐾) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))}) |
| 29 | 2, 28 | eqtrid 2789 |
. 2
⊢ (𝐾 ∈ V → 𝐶 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))}) |
| 30 | 1, 29 | syl 17 |
1
⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))}) |