Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrfval Structured version   Visualization version   GIF version

Theorem cvrfval 36398
Description: Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrfval (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   < (𝑥,𝑦,𝑧)

Proof of Theorem cvrfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐾𝐴𝐾 ∈ V)
2 cvrfval.c . . 3 𝐶 = ( ⋖ ‘𝐾)
3 fveq2 6664 . . . . . . . . 9 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 cvrfval.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2874 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65eleq2d 2898 . . . . . . 7 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝) ↔ 𝑥𝐵))
75eleq2d 2898 . . . . . . 7 (𝑝 = 𝐾 → (𝑦 ∈ (Base‘𝑝) ↔ 𝑦𝐵))
86, 7anbi12d 632 . . . . . 6 (𝑝 = 𝐾 → ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ↔ (𝑥𝐵𝑦𝐵)))
9 fveq2 6664 . . . . . . . 8 (𝑝 = 𝐾 → (lt‘𝑝) = (lt‘𝐾))
10 cvrfval.s . . . . . . . 8 < = (lt‘𝐾)
119, 10syl6eqr 2874 . . . . . . 7 (𝑝 = 𝐾 → (lt‘𝑝) = < )
1211breqd 5069 . . . . . 6 (𝑝 = 𝐾 → (𝑥(lt‘𝑝)𝑦𝑥 < 𝑦))
1311breqd 5069 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑥(lt‘𝑝)𝑧𝑥 < 𝑧))
1411breqd 5069 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑧(lt‘𝑝)𝑦𝑧 < 𝑦))
1513, 14anbi12d 632 . . . . . . . 8 (𝑝 = 𝐾 → ((𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦) ↔ (𝑥 < 𝑧𝑧 < 𝑦)))
165, 15rexeqbidv 3402 . . . . . . 7 (𝑝 = 𝐾 → (∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦) ↔ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))
1716notbid 320 . . . . . 6 (𝑝 = 𝐾 → (¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦) ↔ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))
188, 12, 173anbi123d 1432 . . . . 5 (𝑝 = 𝐾 → (((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
1918opabbidv 5124 . . . 4 (𝑝 = 𝐾 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
20 df-covers 36396 . . . 4 ⋖ = (𝑝 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦))})
21 3anass 1091 . . . . . 6 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
2221opabbii 5125 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}
234fvexi 6678 . . . . . . 7 𝐵 ∈ V
2423, 23xpex 7470 . . . . . 6 (𝐵 × 𝐵) ∈ V
25 opabssxp 5637 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ⊆ (𝐵 × 𝐵)
2624, 25ssexi 5218 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ∈ V
2722, 26eqeltri 2909 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} ∈ V
2819, 20, 27fvmpt 6762 . . 3 (𝐾 ∈ V → ( ⋖ ‘𝐾) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
292, 28syl5eq 2868 . 2 (𝐾 ∈ V → 𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
301, 29syl 17 1 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3494   class class class wbr 5058  {copab 5120   × cxp 5547  cfv 6349  Basecbs 16477  ltcplt 17545  ccvr 36392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-covers 36396
This theorem is referenced by:  cvrval  36399
  Copyright terms: Public domain W3C validator