![]() |
Metamath
Proof Explorer Theorem List (p. 387 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30640) |
![]() (30641-32163) |
![]() (32164-48040) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | omlop 38601 | An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
β’ (πΎ β OML β πΎ β OP) | ||
Theorem | omllat 38602 | An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.) |
β’ (πΎ β OML β πΎ β Lat) | ||
Theorem | omllaw 38603 | The orthomodular law. (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β π = (π β¨ (π β§ ( β₯ βπ))))) | ||
Theorem | omllaw2N 38604 | Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 31307 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β (π β¨ (( β₯ βπ) β§ π)) = π)) | ||
Theorem | omllaw3 38605 | Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 31158 analog.) (Contributed by NM, 19-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ 0 = (0.βπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β ((π β€ π β§ (π β§ ( β₯ βπ)) = 0 ) β π = π)) | ||
Theorem | omllaw4 38606 | Orthomodular law equivalent. Remark in [Holland95] p. 223. (Contributed by NM, 19-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β (( β₯ β(( β₯ βπ) β§ π)) β§ π) = π)) | ||
Theorem | omllaw5N 38607 | The orthomodular law. Remark in [Kalmbach] p. 22. (pjoml5 31335 analog.) (Contributed by NM, 14-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β¨ (( β₯ βπ) β§ (π β¨ π))) = (π β¨ π)) | ||
Theorem | cmtcomlemN 38608 | Lemma for cmtcomN 38609. (cmcmlem 31313 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ππΆπ)) | ||
Theorem | cmtcomN 38609 | Commutation is symmetric. Theorem 2(v) in [Kalmbach] p. 22. (cmcmi 31314 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ππΆπ)) | ||
Theorem | cmt2N 38610 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (cmcm2i 31315 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ππΆ( β₯ βπ))) | ||
Theorem | cmt3N 38611 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31317 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ( β₯ βπ)πΆπ)) | ||
Theorem | cmt4N 38612 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31317 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ( β₯ βπ)πΆ( β₯ βπ))) | ||
Theorem | cmtbr2N 38613 | Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 31318 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β π = ((π β¨ π) β§ (π β¨ ( β₯ βπ))))) | ||
Theorem | cmtbr3N 38614 | Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 31330 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β (π β§ (( β₯ βπ) β¨ π)) = (π β§ π))) | ||
Theorem | cmtbr4N 38615 | Alternate definition for the commutes relation. (cmbr4i 31323 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β (π β§ (( β₯ βπ) β¨ π)) β€ π)) | ||
Theorem | lecmtN 38616 | Ordered elements commute. (lecmi 31324 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β ππΆπ)) | ||
Theorem | cmtidN 38617 | Any element commutes with itself. (cmidi 31332 analog.) (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅) β ππΆπ) | ||
Theorem | omlfh1N 38618 | Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 31340 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (ππΆπ β§ ππΆπ)) β (π β§ (π β¨ π)) = ((π β§ π) β¨ (π β§ π))) | ||
Theorem | omlfh3N 38619 | Foulis-Holland Theorem, part 3. Dual of omlfh1N 38618. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (ππΆπ β§ ππΆπ)) β (π β¨ (π β§ π)) = ((π β¨ π) β§ (π β¨ π))) | ||
Theorem | omlmod1i2N 38620 | Analogue of modular law atmod1i2 39220 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (π β€ π β§ ππΆπ)) β (π β¨ (π β§ π)) = ((π β¨ π) β§ π)) | ||
Theorem | omlspjN 38621 | Contraction of a Sasaki projection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ (π β π΅ β§ π β π΅) β§ π β€ π) β ((π β¨ ( β₯ βπ)) β§ π) = π) | ||
Syntax | ccvr 38622 | Extend class notation with covers relation. |
class β | ||
Syntax | catm 38623 | Extend class notation with atoms. |
class Atoms | ||
Syntax | cal 38624 | Extend class notation with atomic lattices. |
class AtLat | ||
Syntax | clc 38625 | Extend class notation with lattices with the covering property. |
class CvLat | ||
Definition | df-covers 38626* | Define the covers relation ("is covered by") for posets. "π is covered by π " means that π is strictly less than π and there is nothing in between. See cvrval 38629 for the relation form. (Contributed by NM, 18-Sep-2011.) |
β’ β = (π β V β¦ {β¨π, πβ© β£ ((π β (Baseβπ) β§ π β (Baseβπ)) β§ π(ltβπ)π β§ Β¬ βπ§ β (Baseβπ)(π(ltβπ)π§ β§ π§(ltβπ)π))}) | ||
Definition | df-ats 38627* | Define the class of poset atoms. (Contributed by NM, 18-Sep-2011.) |
β’ Atoms = (π β V β¦ {π β (Baseβπ) β£ (0.βπ)( β βπ)π}) | ||
Theorem | cvrfval 38628* | Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ (πΎ β π΄ β πΆ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ π₯ < π¦ β§ Β¬ βπ§ β π΅ (π₯ < π§ β§ π§ < π¦))}) | ||
Theorem | cvrval 38629* | Binary relation expressing π΅ covers π΄, which means that π΅ is larger than π΄ and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (cvbr 32004 analog.) (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β π΄ β§ π β π΅ β§ π β π΅) β (ππΆπ β (π < π β§ Β¬ βπ§ β π΅ (π < π§ β§ π§ < π)))) | ||
Theorem | cvrlt 38630 | The covers relation implies the less-than relation. (cvpss 32007 analog.) (Contributed by NM, 8-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ (((πΎ β π΄ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β π < π) | ||
Theorem | cvrnbtwn 38631 | There is no element between the two arguments of the covers relation. (cvnbtwn 32008 analog.) (Contributed by NM, 18-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β π΄ β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β Β¬ (π < π β§ π < π)) | ||
Theorem | ncvr1 38632 | No element covers the lattice unity. (Contributed by NM, 8-Jul-2013.) |
β’ π΅ = (BaseβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β OP β§ π β π΅) β Β¬ 1 πΆπ) | ||
Theorem | cvrletrN 38633 | Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((ππΆπ β§ π β€ π) β π < π)) | ||
Theorem | cvrval2 38634* | Binary relation expressing π covers π. Definition of covers in [Kalmbach] p. 15. (cvbr2 32005 analog.) (Contributed by NM, 16-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β π΄ β§ π β π΅ β§ π β π΅) β (ππΆπ β (π < π β§ βπ§ β π΅ ((π < π§ β§ π§ β€ π) β π§ = π)))) | ||
Theorem | cvrnbtwn2 38635 | The covers relation implies no in-betweenness. (cvnbtwn2 32009 analog.) (Contributed by NM, 17-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β ((π < π β§ π β€ π) β π = π)) | ||
Theorem | cvrnbtwn3 38636 | The covers relation implies no in-betweenness. (cvnbtwn3 32010 analog.) (Contributed by NM, 4-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β ((π β€ π β§ π < π) β π = π)) | ||
Theorem | cvrcon3b 38637 | Contraposition law for the covers relation. (cvcon3 32006 analog.) (Contributed by NM, 4-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β OP β§ π β π΅ β§ π β π΅) β (ππΆπ β ( β₯ βπ)πΆ( β₯ βπ))) | ||
Theorem | cvrle 38638 | The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ (((πΎ β π΄ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β π β€ π) | ||
Theorem | cvrnbtwn4 38639 | The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 32011 analog.) (Contributed by NM, 18-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β ((π β€ π β§ π β€ π) β (π = π β¨ π = π))) | ||
Theorem | cvrnle 38640 | The covers relation implies the negation of the converse "less than or equal to" relation. (Contributed by NM, 18-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ ππΆπ) β Β¬ π β€ π) | ||
Theorem | cvrne 38641 | The covers relation implies inequality. (Contributed by NM, 13-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) β β’ (((πΎ β π΄ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β π β π) | ||
Theorem | cvrnrefN 38642 | The covers relation is not reflexive. (cvnref 32013 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β π΄ β§ π β π΅) β Β¬ ππΆπ) | ||
Theorem | cvrcmp 38643 | If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (ππΆπ β§ ππΆπ)) β (π β€ π β π = π)) | ||
Theorem | cvrcmp2 38644 | If two lattice elements covered by a third are comparable, then they are equal. (Contributed by NM, 20-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β OP β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (ππΆπ β§ ππΆπ)) β (π β€ π β π = π)) | ||
Theorem | pats 38645* | The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β π· β π΄ = {π₯ β π΅ β£ 0 πΆπ₯}) | ||
Theorem | isat 38646 | The predicate "is an atom". (ela 32061 analog.) (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β π· β (π β π΄ β (π β π΅ β§ 0 πΆπ))) | ||
Theorem | isat2 38647 | The predicate "is an atom". (elatcv0 32063 analog.) (Contributed by NM, 18-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β π· β§ π β π΅) β (π β π΄ β 0 πΆπ)) | ||
Theorem | atcvr0 38648 | An atom covers zero. (atcv0 32064 analog.) (Contributed by NM, 4-Nov-2011.) |
β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β π· β§ π β π΄) β 0 πΆπ) | ||
Theorem | atbase 38649 | An atom is a member of the lattice base set (i.e. a lattice element). (atelch 32066 analog.) (Contributed by NM, 10-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (π β π΄ β π β π΅) | ||
Theorem | atssbase 38650 | The set of atoms is a subset of the base set. (atssch 32065 analog.) (Contributed by NM, 21-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ π΄ β π΅ | ||
Theorem | 0ltat 38651 | An atom is greater than zero. (Contributed by NM, 4-Jul-2012.) |
β’ 0 = (0.βπΎ) & β’ < = (ltβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β OP β§ π β π΄) β 0 < π) | ||
Theorem | leatb 38652 | A poset element less than or equal to an atom equals either zero or the atom. (atss 32068 analog.) (Contributed by NM, 17-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β OP β§ π β π΅ β§ π β π΄) β (π β€ π β (π = π β¨ π = 0 ))) | ||
Theorem | leat 38653 | A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OP β§ π β π΅ β§ π β π΄) β§ π β€ π) β (π = π β¨ π = 0 )) | ||
Theorem | leat2 38654 | A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OP β§ π β π΅ β§ π β π΄) β§ (π β 0 β§ π β€ π)) β π = π) | ||
Theorem | leat3 38655 | A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OP β§ π β π΅ β§ π β π΄) β§ π β€ π) β (π β π΄ β¨ π = 0 )) | ||
Theorem | meetat 38656 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β OL β§ π β π΅ β§ π β π΄) β ((π β§ π) = π β¨ (π β§ π) = 0 )) | ||
Theorem | meetat2 38657 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β OL β§ π β π΅ β§ π β π΄) β ((π β§ π) β π΄ β¨ (π β§ π) = 0 )) | ||
Definition | df-atl 38658* | Define the class of atomic lattices, in which every nonzero element is greater than or equal to an atom. We also ensure the existence of a lattice zero, since a lattice by itself may not have a zero. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
β’ AtLat = {π β Lat β£ ((Baseβπ) β dom (glbβπ) β§ βπ₯ β (Baseβπ)(π₯ β (0.βπ) β βπ β (Atomsβπ)π(leβπ)π₯))} | ||
Theorem | isatl 38659* | The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β AtLat β (πΎ β Lat β§ π΅ β dom πΊ β§ βπ₯ β π΅ (π₯ β 0 β βπ¦ β π΄ π¦ β€ π₯))) | ||
Theorem | atllat 38660 | An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
β’ (πΎ β AtLat β πΎ β Lat) | ||
Theorem | atlpos 38661 | An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.) |
β’ (πΎ β AtLat β πΎ β Poset) | ||
Theorem | atl0dm 38662 | Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
β’ π΅ = (BaseβπΎ) & β’ π = (lubβπΎ) & β’ πΊ = (glbβπΎ) β β’ (πΎ β AtLat β π΅ β dom πΊ) | ||
Theorem | atl0cl 38663 | An atomic lattice has a zero element. We can use this in place of op0cl 38544 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ 0 = (0.βπΎ) β β’ (πΎ β AtLat β 0 β π΅) | ||
Theorem | atl0le 38664 | Orthoposet zero is less than or equal to any element. (ch0le 31163 analog.) (Contributed by NM, 12-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) β β’ ((πΎ β AtLat β§ π β π΅) β 0 β€ π) | ||
Theorem | atlle0 38665 | An element less than or equal to zero equals zero. (chle0 31165 analog.) (Contributed by NM, 21-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) β β’ ((πΎ β AtLat β§ π β π΅) β (π β€ 0 β π = 0 )) | ||
Theorem | atlltn0 38666 | A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ 0 = (0.βπΎ) β β’ ((πΎ β AtLat β§ π β π΅) β ( 0 < π β π β 0 )) | ||
Theorem | isat3 38667* | The predicate "is an atom". (elat2 32062 analog.) (Contributed by NM, 27-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β AtLat β (π β π΄ β (π β π΅ β§ π β 0 β§ βπ₯ β π΅ (π₯ β€ π β (π₯ = π β¨ π₯ = 0 ))))) | ||
Theorem | atn0 38668 | An atom is not zero. (atne0 32067 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄) β π β 0 ) | ||
Theorem | atnle0 38669 | An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄) β Β¬ π β€ 0 ) | ||
Theorem | atlen0 38670 | A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β AtLat β§ π β π΅ β§ π β π΄) β§ π β€ π) β π β 0 ) | ||
Theorem | atcmp 38671 | If two atoms are comparable, they are equal. (atsseq 32069 analog.) (Contributed by NM, 13-Oct-2011.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (π β€ π β π = π)) | ||
Theorem | atncmp 38672 | Frequently-used variation of atcmp 38671. (Contributed by NM, 29-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (Β¬ π β€ π β π β π)) | ||
Theorem | atnlt 38673 | Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.) |
β’ < = (ltβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β Β¬ π < π) | ||
Theorem | atcvreq0 38674 | An element covered by an atom must be zero. (atcveq0 32070 analog.) (Contributed by NM, 4-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΅ β§ π β π΄) β (ππΆπ β π = 0 )) | ||
Theorem | atncvrN 38675 | Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β Β¬ ππΆπ) | ||
Theorem | atlex 38676* | Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 32082 analog.) (Contributed by NM, 21-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΅ β§ π β 0 ) β βπ¦ β π΄ π¦ β€ π) | ||
Theorem | atnle 38677 | Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 32098 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΅) β (Β¬ π β€ π β (π β§ π) = 0 )) | ||
Theorem | atnem0 38678 | The meet of distinct atoms is zero. (atnemeq0 32099 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (π β π β (π β§ π) = 0 )) | ||
Theorem | atlatmstc 38679* | An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 32084 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 1 = (lubβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§ π β π΅) β ( 1 β{π¦ β π΄ β£ π¦ β€ π}) = π) | ||
Theorem | atlatle 38680* | The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 32093 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§ π β π΅ β§ π β π΅) β (π β€ π β βπ β π΄ (π β€ π β π β€ π))) | ||
Theorem | atlrelat1 38681* | An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32085, with β§ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§ π β π΅ β§ π β π΅) β (π < π β βπ β π΄ (Β¬ π β€ π β§ π β€ π))) | ||
Definition | df-cvlat 38682* | Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012.) |
β’ CvLat = {π β AtLat β£ βπ β (Atomsβπ)βπ β (Atomsβπ)βπ β (Baseβπ)((Β¬ π(leβπ)π β§ π(leβπ)(π(joinβπ)π)) β π(leβπ)(π(joinβπ)π))} | ||
Theorem | iscvlat 38683* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β CvLat β (πΎ β AtLat β§ βπ β π΄ βπ β π΄ βπ₯ β π΅ ((Β¬ π β€ π₯ β§ π β€ (π₯ β¨ π)) β π β€ (π₯ β¨ π)))) | ||
Theorem | iscvlat2N 38684* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β CvLat β (πΎ β AtLat β§ βπ β π΄ βπ β π΄ βπ₯ β π΅ (((π β§ π₯) = 0 β§ π β€ (π₯ β¨ π)) β π β€ (π₯ β¨ π)))) | ||
Theorem | cvlatl 38685 | An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
β’ (πΎ β CvLat β πΎ β AtLat) | ||
Theorem | cvllat 38686 | An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
β’ (πΎ β CvLat β πΎ β Lat) | ||
Theorem | cvlposN 38687 | An atomic lattice with the covering property is a poset. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
β’ (πΎ β CvLat β πΎ β Poset) | ||
Theorem | cvlexch1 38688 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β π β€ (π β¨ π))) | ||
Theorem | cvlexch2 38689 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β π β€ (π β¨ π))) | ||
Theorem | cvlexchb1 38690 | An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | cvlexchb2 38691 | An atomic covering lattice has the exchange property. (Contributed by NM, 22-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | cvlexch3 38692 | An atomic covering lattice has the exchange property. (atexch 32103 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ (π β§ π) = 0 ) β (π β€ (π β¨ π) β π β€ (π β¨ π))) | ||
Theorem | cvlexch4N 38693 | An atomic covering lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ (π β§ π) = 0 ) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | cvlatexchb1 38694 | A version of cvlexchb1 38690 for atoms. (Contributed by NM, 5-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | cvlatexchb2 38695 | A version of cvlexchb2 38691 for atoms. (Contributed by NM, 5-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π ) β (π β¨ π ) = (π β¨ π ))) | ||
Theorem | cvlatexch1 38696 | Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β π β€ (π β¨ π))) | ||
Theorem | cvlatexch2 38697 | Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π ) β π β€ (π β¨ π ))) | ||
Theorem | cvlatexch3 38698 | Atom exchange property. (Contributed by NM, 29-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π )) β (π β€ (π β¨ π ) β (π β¨ π) = (π β¨ π ))) | ||
Theorem | cvlcvr1 38699 | The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 32077 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΅ β§ π β π΄) β (Β¬ π β€ π β ππΆ(π β¨ π))) | ||
Theorem | cvlcvrp 38700 | A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 32097 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΅ β§ π β π΄) β ((π β§ π) = 0 β ππΆ(π β¨ π))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |