HomeHome Metamath Proof Explorer
Theorem List (p. 387 of 499)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30893)
  Hilbert Space Explorer  Hilbert Space Explorer
(30894-32416)
  Users' Mathboxes  Users' Mathboxes
(32417-49836)
 

Theorem List for Metamath Proof Explorer - 38601-38700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrefsymrels2 38601 Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38624) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 38549, cf. the comment of dfrefrels2 38549. (Contributed by Peter Mazsa, 20-Jul-2019.)
( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
 
Theoremrefsymrels3 38602* Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38625) can use the 𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the 𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦) version of dfrefrels3 38550, cf. the comment of dfrefrel3 38552. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.)
( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))}
 
Theoremrefsymrel2 38603 A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 38551, cf. the comment of dfrefrels2 38549. (Contributed by Peter Mazsa, 23-Aug-2021.)
(( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
 
Theoremrefsymrel3 38604* A relation which is reflexive and symmetric (like an equivalence relation) can use the 𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for its reflexive part, not just the 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) version of dfrefrel3 38552, cf. the comment of dfrefrel3 38552. (Contributed by Peter Mazsa, 23-Aug-2021.)
(( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
 
Theoremelrefsymrels2 38605 Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38624) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 38549, cf. the comment of dfrefrels2 38549. (Contributed by Peter Mazsa, 22-Jul-2019.)
(𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ 𝑅 ∈ Rels ))
 
Theoremelrefsymrels3 38606* Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38625) can use the 𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for their reflexive part, not just the 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) version of dfrefrels3 38550, cf. the comment of dfrefrel3 38552. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.)
(𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels ))
 
Theoremelrefsymrelsrel 38607 For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.)
(𝑅𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅)))
 
21.26.11  Transitivity
 
Definitiondf-trs 38608 Define the class of all transitive sets (versus the transitive class defined in df-tr 5199). It is used only by df-trrels 38609.

Note the similarity of the definitions of df-refs 38546, df-syms 38578 and df-trs 38608. (Contributed by Peter Mazsa, 17-Jul-2021.)

Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
 
Definitiondf-trrels 38609 Define the class of transitive relations. For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate, see eltrrelsrel 38617. Alternate definitions are dftrrels2 38611 and dftrrels3 38612.

This definition is similar to the definitions of the classes of reflexive (df-refrels 38547) and symmetric (df-symrels 38579) relations. (Contributed by Peter Mazsa, 7-Jul-2019.)

TrRels = ( Trs ∩ Rels )
 
Definitiondf-trrel 38610 Define the transitive relation predicate. (Read: 𝑅 is a transitive relation.) For sets, being an element of the class of transitive relations (df-trrels 38609) is equivalent to satisfying the transitive relation predicate, see eltrrelsrel 38617. Alternate definitions are dftrrel2 38613 and dftrrel3 38614. (Contributed by Peter Mazsa, 17-Jul-2021.)
( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
 
Theoremdftrrels2 38611 Alternate definition of the class of transitive relations.

I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝐴𝑢𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5625 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝐵𝑢𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥𝐴𝑦𝐵 𝑧𝐶((𝑥𝑅𝑦𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶((𝑥𝑅𝑦𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case.

If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 38447 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.)

TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
 
Theoremdftrrels3 38612* Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.)
TrRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)}
 
Theoremdftrrel2 38613 Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.)
( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
 
Theoremdftrrel3 38614* Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.)
( TrRel 𝑅 ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅))
 
Theoremeltrrels2 38615 Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.)
(𝑅 ∈ TrRels ↔ ((𝑅𝑅) ⊆ 𝑅𝑅 ∈ Rels ))
 
Theoremeltrrels3 38616* Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.)
(𝑅 ∈ TrRels ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels ))
 
Theoremeltrrelsrel 38617 For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.)
(𝑅𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅))
 
Theoremtrreleq 38618 Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.)
(𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))
 
Theoremtrrelressn 38619 Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38478) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.)
TrRel (𝑅 ↾ {𝐴})
 
21.26.12  Equivalence relations
 
Definitiondf-eqvrels 38620 Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38630. Alternate definitions are dfeqvrels2 38624 and dfeqvrels3 38625. (Contributed by Peter Mazsa, 7-Nov-2018.)
EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
 
Definitiondf-eqvrel 38621 Define the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) For sets, being an element of the class of equivalence relations (df-eqvrels 38620) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38630. Alternate definitions are dfeqvrel2 38626 and dfeqvrel3 38627. (Contributed by Peter Mazsa, 17-Apr-2019.)
( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
 
Definitiondf-coeleqvrels 38622 Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38632. Alternate definition is dfcoeleqvrels 38657. (Contributed by Peter Mazsa, 28-Nov-2022.)
CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
 
Definitiondf-coeleqvrel 38623 Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38658. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38632. (Contributed by Peter Mazsa, 11-Dec-2021.)
( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
 
Theoremdfeqvrels2 38624 Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.)
EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
 
Theoremdfeqvrels3 38625* Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.)
EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
 
Theoremdfeqvrel2 38626 Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.)
( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
 
Theoremdfeqvrel3 38627* Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.)
( EqvRel 𝑅 ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel 𝑅))
 
Theoremeleqvrels2 38628 Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.)
(𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ))
 
Theoremeleqvrels3 38629* Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.)
(𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels ))
 
Theoremeleqvrelsrel 38630 For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021.)
(𝑅𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
 
Theoremelcoeleqvrels 38631 Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.)
(𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ ( E ↾ 𝐴) ∈ EqvRels ))
 
Theoremelcoeleqvrelsrel 38632 For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.)
(𝐴𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴))
 
Theoremeqvrelrel 38633 An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019.)
( EqvRel 𝑅 → Rel 𝑅)
 
Theoremeqvrelrefrel 38634 An equivalence relation is reflexive. (Contributed by Peter Mazsa, 29-Dec-2021.)
( EqvRel 𝑅 → RefRel 𝑅)
 
Theoremeqvrelsymrel 38635 An equivalence relation is symmetric. (Contributed by Peter Mazsa, 29-Dec-2021.)
( EqvRel 𝑅 → SymRel 𝑅)
 
Theoremeqvreltrrel 38636 An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021.)
( EqvRel 𝑅 → TrRel 𝑅)
 
Theoremeqvrelim 38637 Equivalence relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.)
( EqvRel 𝑅 → dom 𝑅 = ran 𝑅)
 
Theoremeqvreleq 38638 Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.)
(𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))
 
Theoremeqvreleqi 38639 Equality theorem for equivalence relation, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.)
𝑅 = 𝑆       ( EqvRel 𝑅 ↔ EqvRel 𝑆)
 
Theoremeqvreleqd 38640 Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.)
(𝜑𝑅 = 𝑆)       (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))
 
Theoremeqvrelsym 38641 An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
(𝜑 → EqvRel 𝑅)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐵𝑅𝐴)
 
Theoremeqvrelsymb 38642 An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.)
(𝜑 → EqvRel 𝑅)       (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theoremeqvreltr 38643 An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
(𝜑 → EqvRel 𝑅)       (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
 
Theoremeqvreltrd 38644 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
(𝜑 → EqvRel 𝑅)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremeqvreltr4d 38645 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
(𝜑 → EqvRel 𝑅)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐶𝑅𝐵)       (𝜑𝐴𝑅𝐶)
 
Theoremeqvrelref 38646 An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
(𝜑 → EqvRel 𝑅)    &   (𝜑𝐴 ∈ dom 𝑅)       (𝜑𝐴𝑅𝐴)
 
Theoremeqvrelth 38647 Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
(𝜑 → EqvRel 𝑅)    &   (𝜑𝐴 ∈ dom 𝑅)       (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
 
Theoremeqvrelcl 38648 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
(𝜑 → EqvRel 𝑅)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐴 ∈ dom 𝑅)
 
Theoremeqvrelthi 38649 Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
(𝜑 → EqvRel 𝑅)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
 
Theoremeqvreldisj 38650 Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
 
TheoremqsdisjALTV 38651 Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.)
(𝜑 → EqvRel 𝑅)    &   (𝜑𝐵 ∈ (𝐴 / 𝑅))    &   (𝜑𝐶 ∈ (𝐴 / 𝑅))       (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
 
Theoremeqvrelqsel 38652 If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 28-Dec-2019.)
(( EqvRel 𝑅𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)
 
Theoremeqvrelcoss 38653 Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.)
( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅)
 
Theoremeqvrelcoss3 38654* Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.)
( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
 
Theoremeqvrelcoss2 38655 Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.)
( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅)
 
Theoremeqvrelcoss4 38656* Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 30-Sep-2021.)
( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
 
Theoremdfcoeleqvrels 38657 Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38655, eqvrelcoss3 38654 and eqvrelcoss4 38656 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.)
CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels }
 
Theoremdfcoeleqvrel 38658 Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 38655, eqvrelcoss3 38654 and eqvrelcoss4 38656 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.)
( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴)
 
21.26.13  Redundancy
 
Definitiondf-redunds 38659* Define the class of all redundant sets 𝑥 with respect to 𝑦 in 𝑧. For sets, binary relation on the class of all redundant sets (brredunds 38662) is equivalent to satisfying the redundancy predicate (df-redund 38660). (Contributed by Peter Mazsa, 23-Oct-2022.)
Redunds = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ (𝑥𝑦 ∧ (𝑥𝑧) = (𝑦𝑧))}
 
Definitiondf-redund 38660 Define the redundancy predicate. Read: 𝐴 is redundant with respect to 𝐵 in 𝐶. For sets, binary relation on the class of all redundant sets (brredunds 38662) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022.)
(𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)))
 
Definitiondf-redundp 38661 Define the redundancy operator for propositions, cf. df-redund 38660. (Contributed by Peter Mazsa, 23-Oct-2022.)
( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ ((𝜑𝜒) ↔ (𝜓𝜒))))
 
Theorembrredunds 38662 Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
 
Theorembrredundsredund 38663 For sets, binary relation on the class of all redundant sets (brredunds 38662) is equivalent to satisfying the redundancy predicate (df-redund 38660). (Contributed by Peter Mazsa, 25-Oct-2022.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ 𝐴 Redund ⟨𝐵, 𝐶⟩))
 
Theoremredundss3 38664 Implication of redundancy predicate. (Contributed by Peter Mazsa, 26-Oct-2022.)
𝐷𝐶       (𝐴 Redund ⟨𝐵, 𝐶⟩ → 𝐴 Redund ⟨𝐵, 𝐷⟩)
 
Theoremredundeq1 38665 Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.)
𝐴 = 𝐷       (𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ 𝐷 Redund ⟨𝐵, 𝐶⟩)
 
Theoremredundpim3 38666 Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022.)
(𝜃𝜒)       ( redund (𝜑, 𝜓, 𝜒) → redund (𝜑, 𝜓, 𝜃))
 
Theoremredundpbi1 38667 Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022.)
(𝜑𝜃)       ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒))
 
Theoremrefrelsredund4 38668 The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38549) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.)
{𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩
 
Theoremrefrelsredund2 38669 The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38549) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.)
{𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩
 
Theoremrefrelsredund3 38670* The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 38550) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.)
{𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund ⟨ RefRels , EqvRels ⟩
 
Theoremrefrelredund4 38671 The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38551) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.)
redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))
 
Theoremrefrelredund2 38672 The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38551) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.)
redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
 
Theoremrefrelredund3 38673* The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 38552) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.)
redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
 
21.26.14  Domain quotients
 
Definitiondf-dmqss 38674* Define the class of domain quotients. Domain quotients are pairs of sets, typically a relation and a set, where the quotient (see df-qs 8628) of the relation on its domain is equal to the set. See comments of df-ers 38700 for the motivation for this definition. (Contributed by Peter Mazsa, 16-Apr-2019.)
DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦}
 
Definitiondf-dmqs 38675 Define the domain quotient predicate. (Read: the domain quotient of 𝑅 is 𝐴.) If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same, see brdmqssqs 38683. (Contributed by Peter Mazsa, 9-Aug-2021.)
(𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)
 
Theoremdmqseq 38676 Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.)
(𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
 
Theoremdmqseqi 38677 Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.)
𝑅 = 𝑆       (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)
 
Theoremdmqseqd 38678 Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.)
(𝜑𝑅 = 𝑆)       (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
 
Theoremdmqseqeq1 38679 Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.)
(𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))
 
Theoremdmqseqeq1i 38680 Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.)
𝑅 = 𝑆       ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)
 
Theoremdmqseqeq1d 38681 Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 26-Sep-2021.)
(𝜑𝑅 = 𝑆)       (𝜑 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))
 
Theorembrdmqss 38682 The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.)
((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))
 
Theorembrdmqssqs 38683 If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same. (Contributed by Peter Mazsa, 14-Aug-2021.)
((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
 
Theoremn0eldmqs 38684 The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018.)
¬ ∅ ∈ (dom 𝑅 / 𝑅)
 
Theoremqseq 38685* The quotient set equal to a class.

This theorem is used when a class 𝐴 is identified with a quotient (dom 𝑅 / 𝑅). In such a situation, every element 𝑢𝐴 is an 𝑅-coset [𝑣]𝑅 for some 𝑣 ∈ dom 𝑅, but there is no requirement that the "witness" 𝑣 be equal to its own block [𝑣]𝑅. 𝐴 is a set of blocks (equivalence classes), not a set of raw witnesses. In particular, when (dom 𝑅 / 𝑅) = 𝐴 is read together with a partition hypothesis 𝑅 Part 𝐴 (defined as dfpart2 38806), 𝐴 is being treated as the set of blocks [𝑣]𝑅; it does not assert any fixed-point condition 𝑣 = [𝑣]𝑅 such as would arise from the mistaken reading 𝑢𝐴𝑢 = [𝑢]𝑅. Cf. dmqsblocks 38890. (Contributed by Peter Mazsa, 19-Oct-2018.)

((𝐵 / 𝑅) = 𝐴 ↔ ∀𝑢(𝑢𝐴 ↔ ∃𝑣𝐵 𝑢 = [𝑣]𝑅))
 
Theoremn0eldmqseq 38686 The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018.)
((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴)
 
Theoremn0elim 38687 Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024.)
(¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
 
Theoremn0el3 38688 Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021.)
(¬ ∅ ∈ 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
 
Theoremcnvepresdmqss 38689 The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.)
(𝐴𝑉 → (( E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴))
 
Theoremcnvepresdmqs 38690 The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.)
(( E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴)
 
Theoremunidmqs 38691 The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018.)
(𝑅𝑉 → (Rel 𝑅 (dom 𝑅 / 𝑅) = ran 𝑅))
 
Theoremunidmqseq 38692 The union of the domain quotient of a relation is equal to the class 𝐴 if and only if the range is equal to it as well. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 28-Dec-2021.)
(𝑅𝑉 → (Rel 𝑅 → ( (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴)))
 
Theoremdmqseqim 38693 If the domain quotient of a relation is equal to the class 𝐴, then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021.)
(𝑅𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = 𝐴)))
 
Theoremdmqseqim2 38694 Lemma for erimeq2 38715. (Contributed by Peter Mazsa, 29-Dec-2021.)
(𝑅𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝐵 ∈ ran 𝑅𝐵 𝐴))))
 
Theoremreleldmqs 38695* Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021.)
(𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅)))
 
Theoremeldmqs1cossres 38696* Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019.)
(𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
 
Theoremreleldmqscoss 38697* Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021.)
(𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)))
 
Theoremdmqscoelseq 38698 Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.)
((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
 
Theoremdmqs1cosscnvepreseq 38699 Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.)
((dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
 
21.26.15  Equivalence relations on domain quotients
 
Definitiondf-ers 38700 Define the class of equivalence relations on domain quotients (or: domain quotients restricted to equivalence relations).

The present definition of equivalence relation in set.mm df-er 8622 "is not standard", "somewhat cryptic", has no constant 0-ary class and does not follow the traditional transparent reflexive-symmetric-transitive relation way of definition of equivalence. Definitions df-eqvrels 38620, dfeqvrels2 38624, dfeqvrels3 38625 and df-eqvrel 38621, dfeqvrel2 38626, dfeqvrel3 38627 are fully transparent in this regard. However, they lack the domain component (dom 𝑅 = 𝐴) of the present df-er 8622. While we acknowledge the need of a domain component, the present df-er 8622 definition does not utilize the results revealed by the new theorems in the Partition-Equivalence Theorem part below (like pets 38889 and pet 38888). From those theorems follows that the natural domain of equivalence relations is

not 𝑅Domain𝐴 (i.e. dom 𝑅 = 𝐴 see brdomaing 35968),

but 𝑅 DomainQss 𝐴 (i.e. (dom 𝑅 / 𝑅) = 𝐴, see brdmqss 38682), see erimeq 38716 vs. prter3 38920.

While I'm sure we need both equivalence relation df-eqvrels 38620 and equivalence relation on domain quotient df-ers 38700, I'm not sure whether we need a third equivalence relation concept with the present dom 𝑅 = 𝐴 component as well: this needs further investigation. As a default I suppose that these two concepts df-eqvrels 38620 and df-ers 38700 are enough and named the predicate version of the one on domain quotient as the alternate version df-erALTV 38701 of the present df-er 8622. (Contributed by Peter Mazsa, 26-Jun-2021.)

Ers = ( DomainQss ↾ EqvRels )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49800 499 49801-49836
  Copyright terms: Public domain < Previous  Next >