| Metamath
Proof Explorer Theorem List (p. 387 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | refsymrels2 38601 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38624) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 38549, cf. the comment of dfrefrels2 38549. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | ||
| Theorem | refsymrels3 38602* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38625) can use the ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) version of dfrefrels3 38550, cf. the comment of dfrefrel3 38552. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} | ||
| Theorem | refsymrel2 38603 | A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 38551, cf. the comment of dfrefrels2 38549. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | ||
| Theorem | refsymrel3 38604* | A relation which is reflexive and symmetric (like an equivalence relation) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for its reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrel3 38552, cf. the comment of dfrefrel3 38552. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ Rel 𝑅)) | ||
| Theorem | elrefsymrels2 38605 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38624) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 38549, cf. the comment of dfrefrels2 38549. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefsymrels3 38606* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38625) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrels3 38550, cf. the comment of dfrefrel3 38552. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefsymrelsrel 38607 | For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) | ||
| Definition | df-trs 38608 |
Define the class of all transitive sets (versus the transitive class
defined in df-tr 5199). It is used only by df-trrels 38609.
Note the similarity of the definitions of df-refs 38546, df-syms 38578 and df-trs 38608. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-trrels 38609 |
Define the class of transitive relations. For sets, being an element of
the class of transitive relations is equivalent to satisfying the
transitive relation predicate, see eltrrelsrel 38617. Alternate definitions
are dftrrels2 38611 and dftrrels3 38612.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38547) and symmetric (df-symrels 38579) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ TrRels = ( Trs ∩ Rels ) | ||
| Definition | df-trrel 38610 | Define the transitive relation predicate. (Read: 𝑅 is a transitive relation.) For sets, being an element of the class of transitive relations (df-trrels 38609) is equivalent to satisfying the transitive relation predicate, see eltrrelsrel 38617. Alternate definitions are dftrrel2 38613 and dftrrel3 38614. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ ( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dftrrels2 38611 |
Alternate definition of the class of transitive relations.
I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐴𝑢 ∧ 𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5625 (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐵𝑢 ∧ 𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀ 𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case. If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 38447 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | ||
| Theorem | dftrrels3 38612* | Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| ⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} | ||
| Theorem | dftrrel2 38613 | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dftrrel3 38614* | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ ( TrRel 𝑅 ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅)) | ||
| Theorem | eltrrels2 38615 | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ TrRels ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eltrrels3 38616* | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ TrRels ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eltrrelsrel 38617 | For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅)) | ||
| Theorem | trreleq 38618 | Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) | ||
| Theorem | trrelressn 38619 | Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38478) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.) |
| ⊢ TrRel (𝑅 ↾ {𝐴}) | ||
| Definition | df-eqvrels 38620 | Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38630. Alternate definitions are dfeqvrels2 38624 and dfeqvrels3 38625. (Contributed by Peter Mazsa, 7-Nov-2018.) |
| ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | ||
| Definition | df-eqvrel 38621 | Define the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) For sets, being an element of the class of equivalence relations (df-eqvrels 38620) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38630. Alternate definitions are dfeqvrel2 38626 and dfeqvrel3 38627. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | ||
| Definition | df-coeleqvrels 38622 | Define the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38632. Alternate definition is dfcoeleqvrels 38657. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | ||
| Definition | df-coeleqvrel 38623 | Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 38658. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 38632. (Contributed by Peter Mazsa, 11-Dec-2021.) |
| ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | ||
| Theorem | dfeqvrels2 38624 | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
| ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | ||
| Theorem | dfeqvrels3 38625* | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
| ⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | ||
| Theorem | dfeqvrel2 38626 | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
| ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | ||
| Theorem | dfeqvrel3 38627* | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
| ⊢ ( EqvRel 𝑅 ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel 𝑅)) | ||
| Theorem | eleqvrels2 38628 | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
| ⊢ (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eleqvrels3 38629* | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
| ⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eleqvrelsrel 38630 | For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) | ||
| Theorem | elcoeleqvrels 38631 | Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) | ||
| Theorem | elcoeleqvrelsrel 38632 | For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴)) | ||
| Theorem | eqvrelrel 38633 | An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019.) |
| ⊢ ( EqvRel 𝑅 → Rel 𝑅) | ||
| Theorem | eqvrelrefrel 38634 | An equivalence relation is reflexive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → RefRel 𝑅) | ||
| Theorem | eqvrelsymrel 38635 | An equivalence relation is symmetric. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → SymRel 𝑅) | ||
| Theorem | eqvreltrrel 38636 | An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → TrRel 𝑅) | ||
| Theorem | eqvrelim 38637 | Equivalence relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
| Theorem | eqvreleq 38638 | Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
| Theorem | eqvreleqi 38639 | Equality theorem for equivalence relation, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ ( EqvRel 𝑅 ↔ EqvRel 𝑆) | ||
| Theorem | eqvreleqd 38640 | Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
| Theorem | eqvrelsym 38641 | An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐴) | ||
| Theorem | eqvrelsymb 38642 | An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
| Theorem | eqvreltr 38643 | An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | ||
| Theorem | eqvreltrd 38644 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqvreltr4d 38645 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqvrelref 38646 | An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐴) | ||
| Theorem | eqvrelth 38647 | Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | ||
| Theorem | eqvrelcl 38648 | Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | eqvrelthi 38649 | Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | ||
| Theorem | eqvreldisj 38650 | Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | ||
| Theorem | qsdisjALTV 38651 | Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) ⇒ ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
| Theorem | eqvrelqsel 38652 | If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 28-Dec-2019.) |
| ⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) | ||
| Theorem | eqvrelcoss 38653 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) | ||
| Theorem | eqvrelcoss3 38654* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
| Theorem | eqvrelcoss2 38655 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅) | ||
| Theorem | eqvrelcoss4 38656* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 30-Sep-2021.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
| Theorem | dfcoeleqvrels 38657 | Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38655, eqvrelcoss3 38654 and eqvrelcoss4 38656 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } | ||
| Theorem | dfcoeleqvrel 38658 | Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 38655, eqvrelcoss3 38654 and eqvrelcoss4 38656 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | ||
| Definition | df-redunds 38659* | Define the class of all redundant sets 𝑥 with respect to 𝑦 in 𝑧. For sets, binary relation on the class of all redundant sets (brredunds 38662) is equivalent to satisfying the redundancy predicate (df-redund 38660). (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | ||
| Definition | df-redund 38660 | Define the redundancy predicate. Read: 𝐴 is redundant with respect to 𝐵 in 𝐶. For sets, binary relation on the class of all redundant sets (brredunds 38662) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | ||
| Definition | df-redundp 38661 | Define the redundancy operator for propositions, cf. df-redund 38660. (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | ||
| Theorem | brredunds 38662 | Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) | ||
| Theorem | brredundsredund 38663 | For sets, binary relation on the class of all redundant sets (brredunds 38662) is equivalent to satisfying the redundancy predicate (df-redund 38660). (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ 𝐴 Redund 〈𝐵, 𝐶〉)) | ||
| Theorem | redundss3 38664 | Implication of redundancy predicate. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ 𝐷 ⊆ 𝐶 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 → 𝐴 Redund 〈𝐵, 𝐷〉) | ||
| Theorem | redundeq1 38665 | Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ 𝐴 = 𝐷 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) | ||
| Theorem | redundpim3 38666 | Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ (𝜃 → 𝜒) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) → redund (𝜑, 𝜓, 𝜃)) | ||
| Theorem | redundpbi1 38667 | Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ (𝜑 ↔ 𝜃) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒)) | ||
| Theorem | refrelsredund4 38668 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38549) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | ||
| Theorem | refrelsredund2 38669 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38549) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 | ||
| Theorem | refrelsredund3 38670* | The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 38550) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 | ||
| Theorem | refrelredund4 38671 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38551) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | ||
| Theorem | refrelredund2 38672 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38551) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
| Theorem | refrelredund3 38673* | The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 38552) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
| Definition | df-dmqss 38674* | Define the class of domain quotients. Domain quotients are pairs of sets, typically a relation and a set, where the quotient (see df-qs 8628) of the relation on its domain is equal to the set. See comments of df-ers 38700 for the motivation for this definition. (Contributed by Peter Mazsa, 16-Apr-2019.) |
| ⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} | ||
| Definition | df-dmqs 38675 | Define the domain quotient predicate. (Read: the domain quotient of 𝑅 is 𝐴.) If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same, see brdmqssqs 38683. (Contributed by Peter Mazsa, 9-Aug-2021.) |
| ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | ||
| Theorem | dmqseq 38676 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
| Theorem | dmqseqi 38677 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆) | ||
| Theorem | dmqseqd 38678 | Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
| Theorem | dmqseqeq1 38679 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | ||
| Theorem | dmqseqeq1i 38680 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴) | ||
| Theorem | dmqseqeq1d 38681 | Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | ||
| Theorem | brdmqss 38682 | The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) | ||
| Theorem | brdmqssqs 38683 | If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴)) | ||
| Theorem | n0eldmqs 38684 | The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018.) |
| ⊢ ¬ ∅ ∈ (dom 𝑅 / 𝑅) | ||
| Theorem | qseq 38685* |
The quotient set equal to a class.
This theorem is used when a class 𝐴 is identified with a quotient (dom 𝑅 / 𝑅). In such a situation, every element 𝑢 ∈ 𝐴 is an 𝑅-coset [𝑣]𝑅 for some 𝑣 ∈ dom 𝑅, but there is no requirement that the "witness" 𝑣 be equal to its own block [𝑣]𝑅. 𝐴 is a set of blocks (equivalence classes), not a set of raw witnesses. In particular, when (dom 𝑅 / 𝑅) = 𝐴 is read together with a partition hypothesis 𝑅 Part 𝐴 (defined as dfpart2 38806), 𝐴 is being treated as the set of blocks [𝑣]𝑅; it does not assert any fixed-point condition 𝑣 = [𝑣]𝑅 such as would arise from the mistaken reading 𝑢 ∈ 𝐴 ↔ 𝑢 = [𝑢]𝑅. Cf. dmqsblocks 38890. (Contributed by Peter Mazsa, 19-Oct-2018.) |
| ⊢ ((𝐵 / 𝑅) = 𝐴 ↔ ∀𝑢(𝑢 ∈ 𝐴 ↔ ∃𝑣 ∈ 𝐵 𝑢 = [𝑣]𝑅)) | ||
| Theorem | n0eldmqseq 38686 | The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018.) |
| ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) | ||
| Theorem | n0elim 38687 | Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | ||
| Theorem | n0el3 38688 | Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021.) |
| ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | ||
| Theorem | cnvepresdmqss 38689 | The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴)) | ||
| Theorem | cnvepresdmqs 38690 | The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ ((◡ E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴) | ||
| Theorem | unidmqs 38691 | The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) | ||
| Theorem | unidmqseq 38692 | The union of the domain quotient of a relation is equal to the class 𝐴 if and only if the range is equal to it as well. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 28-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → (∪ (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴))) | ||
| Theorem | dmqseqim 38693 | If the domain quotient of a relation is equal to the class 𝐴, then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = ∪ 𝐴))) | ||
| Theorem | dmqseqim2 38694 | Lemma for erimeq2 38715. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴)))) | ||
| Theorem | releldmqs 38695* | Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))) | ||
| Theorem | eldmqs1cossres 38696* | Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) | ||
| Theorem | releldmqscoss 38697* | Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))) | ||
| Theorem | dmqscoelseq 38698 | Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | ||
| Theorem | dmqs1cosscnvepreseq 38699 | Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ ((dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | ||
| Definition | df-ers 38700 |
Define the class of equivalence relations on domain quotients (or: domain
quotients restricted to equivalence relations).
The present definition of equivalence relation in set.mm df-er 8622 "is not standard", "somewhat cryptic", has no constant 0-ary class and does not follow the traditional transparent reflexive-symmetric-transitive relation way of definition of equivalence. Definitions df-eqvrels 38620, dfeqvrels2 38624, dfeqvrels3 38625 and df-eqvrel 38621, dfeqvrel2 38626, dfeqvrel3 38627 are fully transparent in this regard. However, they lack the domain component (dom 𝑅 = 𝐴) of the present df-er 8622. While we acknowledge the need of a domain component, the present df-er 8622 definition does not utilize the results revealed by the new theorems in the Partition-Equivalence Theorem part below (like pets 38889 and pet 38888). From those theorems follows that the natural domain of equivalence relations is not 𝑅Domain𝐴 (i.e. dom 𝑅 = 𝐴 see brdomaing 35968), but 𝑅 DomainQss 𝐴 (i.e. (dom 𝑅 / 𝑅) = 𝐴, see brdmqss 38682), see erimeq 38716 vs. prter3 38920. While I'm sure we need both equivalence relation df-eqvrels 38620 and equivalence relation on domain quotient df-ers 38700, I'm not sure whether we need a third equivalence relation concept with the present dom 𝑅 = 𝐴 component as well: this needs further investigation. As a default I suppose that these two concepts df-eqvrels 38620 and df-ers 38700 are enough and named the predicate version of the one on domain quotient as the alternate version df-erALTV 38701 of the present df-er 8622. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ Ers = ( DomainQss ↾ EqvRels ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |