| Metamath
Proof Explorer Theorem List (p. 387 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | coss0 38601 | Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
| ⊢ ≀ ∅ = ∅ | ||
| Theorem | cossid 38602 | Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
| ⊢ ≀ I = I | ||
| Theorem | cosscnvid 38603 | Cosets by the converse identity relation are the identity relation. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ≀ ◡ I = I | ||
| Theorem | trcoss 38604* | Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
| ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
| Theorem | eleccossin 38605 | Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) | ||
| Theorem | trcoss2 38606* | Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.) |
| ⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
| Theorem | cosselrels 38607 | Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) | ||
| Theorem | cnvelrels 38608 | The converse of a set is an element of the class of relations. (Contributed by Peter Mazsa, 18-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ Rels ) | ||
| Theorem | cosscnvelrels 38609 | Cosets of converse sets are elements of the relations class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ Rels ) | ||
| Definition | df-ssr 38610* |
Define the subsets class or the class of subset relations. Similar to
definitions of epsilon relation (df-eprel 5519) and identity relation
(df-id 5514) classes. Subset relation class and Scott
Fenton's subset
class df-sset 35919 are the same: S = SSet (compare dfssr2 38611 with
df-sset 35919), the only reason we do not use dfssr2 38611 as the base
definition of the subsets class is the way we defined the epsilon
relation and the identity relation classes.
The binary relation on the class of subsets and the subclass relationship (df-ss 3915) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set, see brssr 38613. Yet in general we use the subclass relation 𝐴 ⊆ 𝐵 both for classes and for sets, see the comment of df-ss 3915. The only exception (aside from directly investigating the class S e.g. in relssr 38612 or in extssr 38621) is when we have a specific purpose with its usage, like in case of df-refs 38622 versus df-cnvrefs 38637, where we need S to define the class of reflexive sets in order to be able to define the class of converse reflexive sets with the help of the converse of S. The subsets class S has another place in set.mm as well: if we define extensional relation based on the common property in extid 38368, extep 38341 and extssr 38621, then "extrelssr" " |- ExtRel S " is a theorem along with "extrelep" " |- ExtRel E " and "extrelid" " |- ExtRel I " . (Contributed by Peter Mazsa, 25-Jul-2019.) |
| ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | ||
| Theorem | dfssr2 38611 | Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
| ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) | ||
| Theorem | relssr 38612 | The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ Rel S | ||
| Theorem | brssr 38613 | The subset relation and subclass relationship (df-ss 3915) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | brssrid 38614 | Any set is a subset of itself. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) | ||
| Theorem | issetssr 38615 | Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ (𝐴 ∈ V ↔ 𝐴 S 𝐴) | ||
| Theorem | brssrres 38616 | Restricted subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
| ⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) | ||
| Theorem | br1cnvssrres 38617 | Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) | ||
| Theorem | brcnvssr 38618 | The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) | ||
| Theorem | brcnvssrid 38619 | Any set is a converse subset of itself. (Contributed by Peter Mazsa, 9-Jun-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴◡ S 𝐴) | ||
| Theorem | br1cossxrncnvssrres 38620* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | extssr 38621 | Property of subset relation, see also extid 38368, extep 38341 and the comment of df-ssr 38610. (Contributed by Peter Mazsa, 10-Jul-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) | ||
| Definition | df-refs 38622 |
Define the class of all reflexive sets. It is used only by df-refrels 38623.
We use subset relation S (df-ssr 38610) here to be able to define
converse reflexivity (df-cnvrefs 38637), see also the comment of df-ssr 38610.
The elements of this class are not necessarily relations (versus
df-refrels 38623).
Note the similarity of Definitions df-refs 38622, df-syms 38654 and df-trs 38688, cf. comments of dfrefrels2 38625. (Contributed by Peter Mazsa, 19-Jul-2019.) |
| ⊢ Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-refrels 38623 |
Define the class of reflexive relations. This is practically dfrefrels2 38625
(which reveals that RefRels can not include proper
classes like I
as is elements, see comments of dfrefrels2 38625).
Another alternative definition is dfrefrels3 38626. The element of this class and the reflexive relation predicate (df-refrel 38624) are the same, that is, (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝐴 is a set, see elrefrelsrel 38632. This definition is similar to the definitions of the classes of symmetric (df-symrels 38655) and transitive (df-trrels 38689) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ RefRels = ( Refs ∩ Rels ) | ||
| Definition | df-refrel 38624 | Define the reflexive relation predicate. (Read: 𝑅 is a reflexive relation.) This is a surprising definition, see the comment of dfrefrel3 38628. Alternate definitions are dfrefrel2 38627 and dfrefrel3 38628. For sets, being an element of the class of reflexive relations (df-refrels 38623) is equivalent to satisfying the reflexive relation predicate, that is (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝑅 is a set, see elrefrelsrel 38632. (Contributed by Peter Mazsa, 16-Jul-2021.) |
| ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dfrefrels2 38625 |
Alternate definition of the class of reflexive relations. This is a 0-ary
class constant, which is recommended for definitions (see the 1.
Guideline at https://us.metamath.org/ileuni/mathbox.html).
Proper
classes (like I, see iprc 7847)
are not elements of this (or any)
class: if a class is an element of another class, it is not a proper class
but a set, see elex 3458. So if we use 0-ary constant classes as our
main
definitions, they are valid only for sets, not for proper classes. For
proper classes we use predicate-type definitions like df-refrel 38624. See
also the comment of df-rels 38484.
Note that while elementhood in the class of relations cancels restriction of 𝑟 in dfrefrels2 38625, it keeps restriction of I: this is why the very similar definitions df-refs 38622, df-syms 38654 and df-trs 38688 diverge when we switch from (general) sets to relations in dfrefrels2 38625, dfsymrels2 38657 and dftrrels2 38691. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | ||
| Theorem | dfrefrels3 38626* | Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019.) |
| ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} | ||
| Theorem | dfrefrel2 38627 | Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dfrefrel3 38628* |
Alternate definition of the reflexive relation predicate. A relation is
reflexive iff: for all elements on its domain and range, if an element
of its domain is the same as an element of its range, then there is the
relation between them.
Note that this is definitely not the definition we are accustomed to, like e.g. idref 7085 / idrefALT 6064 or df-reflexive 49893 ⊢ (𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥)). It turns out that the not-surprising definition which contains ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 needs symmetry as well, see refsymrels3 38682. Only when this symmetry condition holds, like in case of equivalence relations, see dfeqvrels3 38705, can we write the traditional form ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 for reflexive relations. For the special case with square Cartesian product when the two forms are equivalent see idinxpssinxp4 38378 where ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥). See also similar definition of the converse reflexive relations class dfcnvrefrel3 38643. (Contributed by Peter Mazsa, 8-Jul-2019.) |
| ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ Rel 𝑅)) | ||
| Theorem | dfrefrel5 38629* | Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023.) |
| ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ (dom 𝑅 ∩ ran 𝑅)𝑥𝑅𝑥 ∧ Rel 𝑅)) | ||
| Theorem | elrefrels2 38630 | Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
| ⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefrels3 38631* | Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
| ⊢ (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefrelsrel 38632 | For sets, being an element of the class of reflexive relations (df-refrels 38623) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅)) | ||
| Theorem | refreleq 38633 | Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) | ||
| Theorem | refrelid 38634 | Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ RefRel I | ||
| Theorem | refrelcoss 38635 | The class of cosets by 𝑅 is reflexive. (Contributed by Peter Mazsa, 4-Jul-2020.) |
| ⊢ RefRel ≀ 𝑅 | ||
| Theorem | refrelressn 38636 | Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38564) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → RefRel (𝑅 ↾ {𝐴})) | ||
| Definition | df-cnvrefs 38637 | Define the class of all converse reflexive sets, see the comment of df-ssr 38610. It is used only by df-cnvrefrels 38638. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| ⊢ CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥))◡ S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-cnvrefrels 38638 |
Define the class of converse reflexive relations. This is practically
dfcnvrefrels2 38640 (which uses the traditional subclass
relation ⊆) :
we use converse subset relation (brcnvssr 38618) here to ensure the
comparability to the definitions of the classes of all reflexive
(df-ref 23421), symmetric (df-syms 38654) and transitive (df-trs 38688) sets.
We use this concept to define functions (df-funsALTV 38799, df-funALTV 38800) and disjoints (df-disjs 38822, df-disjALTV 38823). For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 38648. Alternate definitions are dfcnvrefrels2 38640 and dfcnvrefrels3 38641. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | ||
| Definition | df-cnvrefrel 38639 | Define the converse reflexive relation predicate (read: 𝑅 is a converse reflexive relation), see also the comment of dfcnvrefrel3 38643. Alternate definitions are dfcnvrefrel2 38642 and dfcnvrefrel3 38643. (Contributed by Peter Mazsa, 16-Jul-2021.) |
| ⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dfcnvrefrels2 38640 | Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 38625. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} | ||
| Theorem | dfcnvrefrels3 38641* | Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} | ||
| Theorem | dfcnvrefrel2 38642 | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019.) |
| ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dfcnvrefrel3 38643* | Alternate definition of the converse reflexive relation predicate. A relation is converse reflexive iff: for all elements on its domain and range, if for an element of its domain and for an element of its range there is the relation between them, then the two elements are the same, cf. the comment of dfrefrel3 38628. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ ( CnvRefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
| Theorem | dfcnvrefrel4 38644 | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.) |
| ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅)) | ||
| Theorem | dfcnvrefrel5 38645* | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.) |
| ⊢ ( CnvRefRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
| Theorem | elcnvrefrels2 38646 | Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019.) |
| ⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elcnvrefrels3 38647* | Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| ⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elcnvrefrelsrel 38648 | For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 38638) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅)) | ||
| Theorem | cnvrefrelcoss2 38649 | Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) | ||
| Theorem | cosselcnvrefrels2 38650 | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels )) | ||
| Theorem | cosselcnvrefrels3 38651* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑅 ∈ Rels )) | ||
| Theorem | cosselcnvrefrels4 38652* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∃*𝑥 𝑢𝑅𝑥 ∧ ≀ 𝑅 ∈ Rels )) | ||
| Theorem | cosselcnvrefrels5 38653* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅) ∧ ≀ 𝑅 ∈ Rels )) | ||
| Definition | df-syms 38654 |
Define the class of all symmetric sets. It is used only by df-symrels 38655.
Note the similarity of Definitions df-refs 38622, df-syms 38654 and df-trs 38688, cf. the comment of dfrefrels2 38625. (Contributed by Peter Mazsa, 19-Jul-2019.) |
| ⊢ Syms = {𝑥 ∣ ◡(𝑥 ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-symrels 38655 |
Define the class of symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 38673. Alternate definitions are
dfsymrels2 38657, dfsymrels3 38658, dfsymrels4 38663 and dfsymrels5 38664.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38623) and transitive (df-trrels 38689) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ SymRels = ( Syms ∩ Rels ) | ||
| Definition | df-symrel 38656 | Define the symmetric relation predicate. (Read: 𝑅 is a symmetric relation.) For sets, being an element of the class of symmetric relations (df-symrels 38655) is equivalent to satisfying the symmetric relation predicate, see elsymrelsrel 38673. Alternate definitions are dfsymrel2 38665 and dfsymrel3 38666. (Contributed by Peter Mazsa, 16-Jul-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dfsymrels2 38657 | Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 38625. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | ||
| Theorem | dfsymrels3 38658* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)} | ||
| Theorem | elrelscnveq3 38659* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | ||
| Theorem | elrelscnveq 38660 | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) | ||
| Theorem | elrelscnveq2 38661* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
| Theorem | elrelscnveq4 38662* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
| Theorem | dfsymrels4 38663 | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | ||
| Theorem | dfsymrels5 38664* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | ||
| Theorem | dfsymrel2 38665 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dfsymrel3 38666* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
| Theorem | dfsymrel4 38667 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dfsymrel5 38668* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
| Theorem | elsymrels2 38669 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrels3 38670* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrels4 38671 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrels5 38672* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elsymrelsrel 38673 | For sets, being an element of the class of symmetric relations (df-symrels 38655) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) | ||
| Theorem | symreleq 38674 | Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) | ||
| Theorem | symrelim 38675 | Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
| Theorem | symrelcoss 38676 | The class of cosets by 𝑅 is symmetric. (Contributed by Peter Mazsa, 20-Dec-2021.) |
| ⊢ SymRel ≀ 𝑅 | ||
| Theorem | idsymrel 38677 | The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.) |
| ⊢ SymRel I | ||
| Theorem | epnsymrel 38678 | The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
| ⊢ ¬ SymRel E | ||
| Theorem | symrefref2 38679 | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 38680. (Contributed by Peter Mazsa, 19-Jul-2018.) |
| ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | ||
| Theorem | symrefref3 38680* | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 38679. (Contributed by Peter Mazsa, 23-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) | ||
| Theorem | refsymrels2 38681 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38704) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 38625, cf. the comment of dfrefrels2 38625. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | ||
| Theorem | refsymrels3 38682* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38705) can use the ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) version of dfrefrels3 38626, cf. the comment of dfrefrel3 38628. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} | ||
| Theorem | refsymrel2 38683 | A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 38627, cf. the comment of dfrefrels2 38625. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | ||
| Theorem | refsymrel3 38684* | A relation which is reflexive and symmetric (like an equivalence relation) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for its reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrel3 38628, cf. the comment of dfrefrel3 38628. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ Rel 𝑅)) | ||
| Theorem | elrefsymrels2 38685 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38704) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 38625, cf. the comment of dfrefrels2 38625. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefsymrels3 38686* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38705) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrels3 38626, cf. the comment of dfrefrel3 38628. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | elrefsymrelsrel 38687 | For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) | ||
| Definition | df-trs 38688 |
Define the class of all transitive sets (versus the transitive class
defined in df-tr 5201). It is used only by df-trrels 38689.
Note the similarity of the definitions of df-refs 38622, df-syms 38654 and df-trs 38688. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
| Definition | df-trrels 38689 |
Define the class of transitive relations. For sets, being an element of
the class of transitive relations is equivalent to satisfying the
transitive relation predicate, see eltrrelsrel 38697. Alternate definitions
are dftrrels2 38691 and dftrrels3 38692.
This definition is similar to the definitions of the classes of reflexive (df-refrels 38623) and symmetric (df-symrels 38655) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| ⊢ TrRels = ( Trs ∩ Rels ) | ||
| Definition | df-trrel 38690 | Define the transitive relation predicate. (Read: 𝑅 is a transitive relation.) For sets, being an element of the class of transitive relations (df-trrels 38689) is equivalent to satisfying the transitive relation predicate, see eltrrelsrel 38697. Alternate definitions are dftrrel2 38693 and dftrrel3 38694. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ ( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
| Theorem | dftrrels2 38691 |
Alternate definition of the class of transitive relations.
I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐴𝑢 ∧ 𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5628 (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐵𝑢 ∧ 𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀ 𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case. If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 38533 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | ||
| Theorem | dftrrels3 38692* | Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| ⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} | ||
| Theorem | dftrrel2 38693 | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dftrrel3 38694* | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ ( TrRel 𝑅 ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅)) | ||
| Theorem | eltrrels2 38695 | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ TrRels ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eltrrels3 38696* | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ TrRels ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eltrrelsrel 38697 | For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅)) | ||
| Theorem | trreleq 38698 | Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) | ||
| Theorem | trrelressn 38699 | Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38564) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.) |
| ⊢ TrRel (𝑅 ↾ {𝐴}) | ||
| Definition | df-eqvrels 38700 | Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38710. Alternate definitions are dfeqvrels2 38704 and dfeqvrels3 38705. (Contributed by Peter Mazsa, 7-Nov-2018.) |
| ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |