Home | Metamath
Proof Explorer Theorem List (p. 387 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29277) |
Hilbert Space Explorer
(29278-30800) |
Users' Mathboxes
(30801-46488) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cdlemg2dN 38601* | This theorem can be used to shorten 𝐺 = hypothesis. TODO: Fix comment. (Contributed by NM, 21-Apr-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑄)) → 𝐹 = 𝐺) | ||
Theorem | cdlemg2cex 38602* | Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 38574? (Contributed by NM, 22-Apr-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) & ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) | ||
Theorem | cdlemg2ce 38603* | Utility theorem to eliminate p,q when converting theorems with explicit f. TODO: fix comment. (Contributed by NM, 22-Apr-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) & ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) & ⊢ (𝐹 = 𝐺 → (𝜓 ↔ 𝜒)) & ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) ∧ 𝜑) → 𝜒) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → 𝜓) | ||
Theorem | cdlemg2jlemOLDN 38604* | Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. f preserves join: f(r ∨ s) = f(r) ∨ s, p. 115 10th line from bottom. TODO: Combine with cdlemg2jOLDN 38609? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) & ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) | ||
Theorem | cdlemg2fvlem 38605* | Lemma for cdlemg2fv 38610. (Contributed by NM, 23-Apr-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) & ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘𝑋) = ((𝐹‘𝑃) ∨ (𝑋 ∧ 𝑊))) | ||
Theorem | cdlemg2klem 38606* | cdleme42keg 38497 with simpler hypotheses. TODO: FIX COMMENT. (Contributed by NM, 22-Apr-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) & ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑉)) | ||
Theorem | cdlemg2idN 38607 | Version of cdleme31id 38405 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 21-Apr-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = 𝑄 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 = 𝑄) → (𝐹‘𝑋) = 𝑋) | ||
Theorem | cdlemg3a 38608 | Part of proof of Lemma G in [Crawley] p. 116, line 19. Show p ∨ q = p ∨ u. TODO: reformat cdleme0cp 38225 to match this, then replace with cdleme0cp 38225. (Contributed by NM, 19-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) | ||
Theorem | cdlemg2jOLDN 38609 | TODO: Replace this with ltrnj 38143. (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) | ||
Theorem | cdlemg2fv 38610 | Value of a translation in terms of an associated atom. cdleme48fvg 38511 with simpler hypotheses. TODO: Use ltrnj 38143 to vastly simplify. (Contributed by NM, 23-Apr-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘𝑋) = ((𝐹‘𝑃) ∨ (𝑋 ∧ 𝑊))) | ||
Theorem | cdlemg2fv2 38611 | Value of a translation in terms of an associated atom. TODO: FIX COMMENT. TODO: Is this useful elsewhere e.g. around cdlemeg46fjv 38534 that use more complex proofs? TODO: Use ltrnj 38143 to vastly simplify. (Contributed by NM, 23-Apr-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑅 ∨ 𝑈)) = ((𝐹‘𝑅) ∨ 𝑈)) | ||
Theorem | cdlemg2k 38612 | cdleme42keg 38497 with simpler hypotheses. TODO: FIX COMMENT. TODO: derive from cdlemg3a 38608, cdlemg2fv2 38611, cdlemg2jOLDN 38609, ltrnel 38150? (Contributed by NM, 22-Apr-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑈)) | ||
Theorem | cdlemg2kq 38613 | cdlemg2k 38612 with 𝑃 and 𝑄 swapped. TODO: FIX COMMENT. (Contributed by NM, 15-May-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑄) ∨ 𝑈)) | ||
Theorem | cdlemg2l 38614 | TODO: FIX COMMENT. (Contributed by NM, 23-Apr-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = ((𝐹‘(𝐺‘𝑃)) ∨ 𝑈)) | ||
Theorem | cdlemg2m 38615 | TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ∧ 𝑊) = 𝑈) | ||
Theorem | cdlemg5 38616* | TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle 38016? TODO: The ∨ hypothesis is unused. FIX COMMENT. (Contributed by NM, 26-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) | ||
Theorem | cdlemb3 38617* | Given two atoms not under the fiducial co-atom 𝑊, there is a third. Lemma B in [Crawley] p. 112. TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle 38016? Then replace cdlemb2 38052 with it. This is a more general version of cdlemb2 38052 without 𝑃 ≠ 𝑄 condition. (Contributed by NM, 27-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
Theorem | cdlemg7fvbwN 38618 | Properties of a translation of an element not under 𝑊. TODO: Fix comment. Can this be simplified? Perhaps derived from cdleme48bw 38513? Done with a *ltrn* theorem? (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑋) ∈ 𝐵 ∧ ¬ (𝐹‘𝑋) ≤ 𝑊)) | ||
Theorem | cdlemg4a 38619 | TODO: FIX COMMENT If fg(p) = p, then tr f = tr g. (Contributed by NM, 23-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃) → (𝑅‘𝐹) = (𝑅‘𝐺)) | ||
Theorem | cdlemg4b1 38620 | TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) → (𝑃 ∨ 𝑉) = (𝑃 ∨ (𝐺‘𝑃))) | ||
Theorem | cdlemg4b2 38621 | TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) → ((𝐺‘𝑃) ∨ 𝑉) = (𝑃 ∨ (𝐺‘𝑃))) | ||
Theorem | cdlemg4b12 38622 | TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) → ((𝐺‘𝑃) ∨ 𝑉) = (𝑃 ∨ 𝑉)) | ||
Theorem | cdlemg4c 38623 | TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉)) → ¬ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) | ||
Theorem | cdlemg4d 38624 | TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ¬ (𝐺‘𝑄) ≤ ((𝐺‘𝑃) ∨ (𝐹‘(𝐺‘𝑃)))) | ||
Theorem | cdlemg4e 38625 | TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = (((𝐺‘𝑄) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊)))) | ||
Theorem | cdlemg4f 38626 | TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = ((𝑄 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) | ||
Theorem | cdlemg4g 38627 | TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = ((𝑄 ∨ 𝑉) ∧ (𝑃 ∨ 𝑄))) | ||
Theorem | cdlemg4 38628 | TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = 𝑄) | ||
Theorem | cdlemg6a 38629* | TODO: FIX COMMENT. TODO: replace with cdlemg4 38628. (Contributed by NM, 27-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑟)) = 𝑟) | ||
Theorem | cdlemg6b 38630* | TODO: FIX COMMENT. TODO: replace with cdlemg4 38628. (Contributed by NM, 27-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑟 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑟)) = 𝑟)) → (𝐹‘(𝐺‘𝑄)) = 𝑄) | ||
Theorem | cdlemg6c 38631* | TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑉)) → (𝐹‘(𝐺‘𝑄)) = 𝑄)) | ||
Theorem | cdlemg6d 38632* | TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ ¬ 𝑟 ≤ (𝑃 ∨ (𝐺‘𝑃))) → (𝐹‘(𝐺‘𝑄)) = 𝑄)) | ||
Theorem | cdlemg6e 38633 | TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑉 = (𝑅‘𝐺) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = 𝑄) | ||
Theorem | cdlemg6 38634 | TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = 𝑄) | ||
Theorem | cdlemg7fvN 38635 | Value of a translation composition in terms of an associated atom. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘(𝐺‘𝑋)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑋 ∧ 𝑊))) | ||
Theorem | cdlemg7aN 38636 | TODO: FIX COMMENT. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑋)) = 𝑋) | ||
Theorem | cdlemg7N 38637 | TODO: FIX COMMENT. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑋)) = 𝑋) | ||
Theorem | cdlemg8a 38638 | TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg8b 38639 | TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑃 ∨ (𝐹‘(𝐺‘𝑃))) = (𝑃 ∨ 𝑄)) | ||
Theorem | cdlemg8c 38640 | TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑄 ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) | ||
Theorem | cdlemg8d 38641 | TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg8 38642 | TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg9a 38643 | TODO: FIX COMMENT. (Contributed by NM, 1-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑈) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ 𝑈)) ≤ ((𝐺‘𝑃) ∨ 𝑈)) | ||
Theorem | cdlemg9b 38644 | The triples 〈𝑃, (𝐹‘(𝐺‘𝑃)), (𝐹‘𝑃)〉 and 〈𝑄, (𝐹‘(𝐺‘𝑄)), (𝐹‘𝑄)〉 are centrally perspective. TODO: FIX COMMENT. (Contributed by NM, 1-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) | ||
Theorem | cdlemg9 38645 | The triples 〈𝑃, (𝐹‘(𝐺‘𝑃)), (𝐹‘𝑃)〉 and 〈𝑄, (𝐹‘(𝐺‘𝑄)), (𝐹‘𝑄)〉 are axially perspective by dalaw 37897. Part of Lemma G of [Crawley] p. 116, last 2 lines. TODO: FIX COMMENT. (Contributed by NM, 1-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((((𝐹‘(𝐺‘𝑃)) ∨ (𝐺‘𝑃)) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ (𝐺‘𝑄))) ∨ (((𝐺‘𝑃) ∨ 𝑃) ∧ ((𝐺‘𝑄) ∨ 𝑄)))) | ||
Theorem | cdlemg10b 38646 | TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? (Contributed by NM, 4-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) | ||
Theorem | cdlemg10bALTN 38647 | TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? TODO: Compare this proof to cdlemg2m 38615 and pick best, if moved to ltrn* area. (Contributed by NM, 4-May-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) | ||
Theorem | cdlemg11a 38648 | TODO: FIX COMMENT. (Contributed by NM, 4-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (𝐹‘(𝐺‘𝑃)) ≠ 𝑃) | ||
Theorem | cdlemg11aq 38649 | TODO: FIX COMMENT. TODO: can proof using this be restructured to use cdlemg11a 38648? (Contributed by NM, 4-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (𝐹‘(𝐺‘𝑄)) ≠ 𝑄) | ||
Theorem | cdlemg10c 38650 | TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in trl* area? (Contributed by NM, 4-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ↔ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) | ||
Theorem | cdlemg10a 38651 | TODO: FIX COMMENT. (Contributed by NM, 3-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ (((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | ||
Theorem | cdlemg10 38652 | TODO: FIX COMMENT. (Contributed by NM, 4-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ (((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ≤ 𝑊) | ||
Theorem | cdlemg11b 38653 | TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ≠ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) | ||
Theorem | cdlemg12a 38654 | TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑈) ≠ ((𝐺‘𝑃) ∨ 𝑈))) → ((𝑃 ∨ 𝑈) ∧ ((𝐺‘𝑃) ∨ 𝑈)) ≤ ((𝐹‘(𝐺‘𝑃)) ∨ 𝑈)) | ||
Theorem | cdlemg12b 38655 | The triples 〈𝑃, (𝐹‘𝑃), (𝐹‘(𝐺‘𝑃))〉 and 〈𝑄, (𝐹‘𝑄), (𝐹‘(𝐺‘𝑄))〉 are centrally perspective. TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) ≤ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄)))) | ||
Theorem | cdlemg12c 38656 | The triples 〈𝑃, (𝐹‘𝑃), (𝐹‘(𝐺‘𝑃))〉 and 〈𝑄, (𝐹‘𝑄), (𝐹‘(𝐺‘𝑄))〉 are axially perspective by dalaw 37897. TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ (𝑄 ∨ (𝐺‘𝑄))) ≤ ((((𝐺‘𝑃) ∨ (𝐹‘(𝐺‘𝑃))) ∧ ((𝐺‘𝑄) ∨ (𝐹‘(𝐺‘𝑄)))) ∨ (((𝐹‘(𝐺‘𝑃)) ∨ 𝑃) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ 𝑄)))) | ||
Theorem | cdlemg12d 38657 | TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑅‘𝐺) ≤ ((𝑅‘𝐹) ∨ (((𝐹‘(𝐺‘𝑃)) ∨ 𝑃) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ 𝑄)))) | ||
Theorem | cdlemg12e 38658 | TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ (¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝐹‘(𝐺‘𝑃)) ∨ 𝑃) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ 𝑄)) ≠ 0 ) | ||
Theorem | cdlemg12f 38659 | TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊)) | ||
Theorem | cdlemg12g 38660 | TODO: FIX COMMENT. TODO: Combine with cdlemg12f 38659. (Contributed by NM, 6-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) = ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊)) | ||
Theorem | cdlemg12 38661 | TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg13a 38662 | TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) = (𝑅‘𝐺) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (𝑃 ∨ (𝐹‘(𝐺‘𝑃))) = ((𝐺‘𝑃) ∨ (𝐹‘(𝐺‘𝑃)))) | ||
Theorem | cdlemg13 38663 | TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) = (𝑅‘𝐺) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg14f 38664 | TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg14g 38665 | TODO: FIX COMMENT. (Contributed by NM, 22-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐺‘𝑃) = 𝑃)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg15a 38666 | Eliminate the (𝐹‘𝑃) ≠ 𝑃 condition from cdlemg13 38663. TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐹) = (𝑅‘𝐺) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg15 38667 | Eliminate the ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) condition from cdlemg13 38663. TODO: FIX COMMENT. (Contributed by NM, 25-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg16 38668 | Part of proof of Lemma G of [Crawley] p. 116; 2nd line p. 117, which says that (our) cdlemg10 38652 "implies (2)" (of p. 116). No details are provided by the authors, so there may be a shorter proof; but ours requires the 14 lemmas, one using Desargues's law dalaw 37897, in order to make this inference. This final step eliminates the (𝑅‘𝐹) ≠ (𝑅‘𝐺) condition from cdlemg12 38661. TODO: FIX COMMENT. TODO: should we also eliminate 𝑃 ≠ 𝑄 here (or earlier)? Do it if we don't need to add it in for something else later. (Contributed by NM, 6-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ (¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg16ALTN 38669 | This version of cdlemg16 38668 uses cdlemg15a 38666 instead of cdlemg15 38667, in case cdlemg15 38667 ends up not being needed. TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg16z 38670 | Eliminate ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) condition from cdlemg16 38668. TODO: would it help to also eliminate 𝑃 ≠ 𝑄 here or later? (Contributed by NM, 25-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ (¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg16zz 38671 | Eliminate 𝑃 ≠ 𝑄 from cdlemg16z 38670. TODO: Use this only if needed. (Contributed by NM, 26-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg17a 38672 | TODO: FIX COMMENT. (Contributed by NM, 8-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑃) ≤ (𝑃 ∨ 𝑄)) | ||
Theorem | cdlemg17b 38673* | Part of proof of Lemma G in [Crawley] p. 117, 4th line. Whenever (in their terminology) p ∨ q/0 (i.e. the sublattice from 0 to p ∨ q) contains precisely three atoms and g is not the identity, g(p) = q. See also comments under cdleme0nex 38301. (Contributed by NM, 8-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘𝑃) = 𝑄) | ||
Theorem | cdlemg17dN 38674* | TODO: fix comment. (Contributed by NM, 9-May-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐺) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) | ||
Theorem | cdlemg17dALTN 38675 | Same as cdlemg17dN 38674 with fewer antecedents but longer proof TODO: fix comment. (Contributed by NM, 9-May-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐺) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) | ||
Theorem | cdlemg17e 38676* | TODO: fix comment. (Contributed by NM, 8-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ (𝑅‘𝐺))) | ||
Theorem | cdlemg17f 38677* | TODO: fix comment. (Contributed by NM, 8-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃)))) | ||
Theorem | cdlemg17g 38678* | TODO: fix comment. (Contributed by NM, 9-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘(𝐹‘𝑃)) ≤ ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) | ||
Theorem | cdlemg17h 38679* | TODO: fix comment. (Contributed by NM, 10-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ((𝐹‘𝑃) ∨ (𝐹‘𝑄)))) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑆 = (𝐹‘𝑃) ∨ 𝑆 = (𝐹‘𝑄))) | ||
Theorem | cdlemg17i 38680* | TODO: fix comment. (Contributed by NM, 10-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘(𝐹‘𝑃)) = (𝐹‘𝑄)) | ||
Theorem | cdlemg17ir 38681* | TODO: fix comment. (Contributed by NM, 13-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐹‘(𝐺‘𝑃)) = (𝐹‘𝑄)) | ||
Theorem | cdlemg17j 38682* | TODO: fix comment. (Contributed by NM, 11-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘(𝐹‘𝑃)) = (𝐹‘(𝐺‘𝑃))) | ||
Theorem | cdlemg17pq 38683* | Utility theorem for swapping 𝑃 and 𝑄. TODO: fix comment. (Contributed by NM, 11-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ≠ 𝑃) ∧ ((𝐺‘𝑄) ≠ 𝑄 ∧ (𝑅‘𝐺) ≤ (𝑄 ∨ 𝑃) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑄 ∨ 𝑟) = (𝑃 ∨ 𝑟))))) | ||
Theorem | cdlemg17bq 38684* | cdlemg17b 38673 with 𝑃 and 𝑄 swapped. Antecedent 𝐹 ∈ (𝑇‘𝑊) is redundant for easier use. TODO: should we have redundant antecedent for cdlemg17b 38673 also? (Contributed by NM, 13-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘𝑄) = 𝑃) | ||
Theorem | cdlemg17iqN 38685* | cdlemg17i 38680 with 𝑃 and 𝑄 swapped. (Contributed by NM, 13-May-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝐺‘(𝐹‘𝑄)) = (𝐹‘𝑃)) | ||
Theorem | cdlemg17irq 38686* | cdlemg17ir 38681 with 𝑃 and 𝑄 swapped. (Contributed by NM, 13-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐹‘(𝐺‘𝑄)) = (𝐹‘𝑃)) | ||
Theorem | cdlemg17jq 38687* | cdlemg17j 38682 with 𝑃 and 𝑄 swapped. (Contributed by NM, 13-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘(𝐹‘𝑄)) = (𝐹‘(𝐺‘𝑄))) | ||
Theorem | cdlemg17 38688* | Part of Lemma G of [Crawley] p. 117, lines 7 and 8. We show an argument whose value at 𝐺 equals itself. TODO: fix comment. (Contributed by NM, 12-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄))))) = ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄))))) | ||
Theorem | cdlemg18a 38689 | Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → (𝑃 ∨ (𝐹‘𝑄)) ≠ (𝑄 ∨ (𝐹‘𝑃))) | ||
Theorem | cdlemg18b 38690 | Lemma for cdlemg18c 38691. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄))) | ||
Theorem | cdlemg18c 38691 | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘𝑄)) ∧ (𝑄 ∨ (𝐹‘𝑃))) ∈ 𝐴) | ||
Theorem | cdlemg18d 38692* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ∈ 𝐴) | ||
Theorem | cdlemg18 38693* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ≤ 𝑊) | ||
Theorem | cdlemg19a 38694* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) = ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊)) | ||
Theorem | cdlemg19 38695* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg20 38696* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 23-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg21 38697* | Version of cdlemg19 with (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) instead of (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) as a condition. (Contributed by NM, 23-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg22 38698* | cdlemg21 38697 with (𝐹‘𝑃) ≠ 𝑃 condition removed. (Contributed by NM, 23-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg24 38699* | Combine cdlemg16z 38670 and cdlemg22 38698. TODO: Fix comment. (Contributed by NM, 24-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ (((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) | ||
Theorem | cdlemg37 38700* | Use cdlemg8 38642 to eliminate the ≠ (𝑃 ∨ 𝑄) condition of cdlemg24 38699. (Contributed by NM, 31-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |