| Metamath
Proof Explorer Theorem List (p. 387 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-redundp 38601 | Define the redundancy operator for propositions, cf. df-redund 38600. (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | ||
| Theorem | brredunds 38602 | Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) | ||
| Theorem | brredundsredund 38603 | For sets, binary relation on the class of all redundant sets (brredunds 38602) is equivalent to satisfying the redundancy predicate (df-redund 38600). (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ 𝐴 Redund 〈𝐵, 𝐶〉)) | ||
| Theorem | redundss3 38604 | Implication of redundancy predicate. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ 𝐷 ⊆ 𝐶 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 → 𝐴 Redund 〈𝐵, 𝐷〉) | ||
| Theorem | redundeq1 38605 | Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ 𝐴 = 𝐷 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) | ||
| Theorem | redundpim3 38606 | Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ (𝜃 → 𝜒) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) → redund (𝜑, 𝜓, 𝜃)) | ||
| Theorem | redundpbi1 38607 | Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ (𝜑 ↔ 𝜃) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒)) | ||
| Theorem | refrelsredund4 38608 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38489) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | ||
| Theorem | refrelsredund2 38609 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38489) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 | ||
| Theorem | refrelsredund3 38610* | The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 38490) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 | ||
| Theorem | refrelredund4 38611 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38491) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | ||
| Theorem | refrelredund2 38612 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38491) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
| Theorem | refrelredund3 38613* | The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 38492) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
| Definition | df-dmqss 38614* | Define the class of domain quotients. Domain quotients are pairs of sets, typically a relation and a set, where the quotient (see df-qs 8638) of the relation on its domain is equal to the set. See comments of df-ers 38640 for the motivation for this definition. (Contributed by Peter Mazsa, 16-Apr-2019.) |
| ⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} | ||
| Definition | df-dmqs 38615 | Define the domain quotient predicate. (Read: the domain quotient of 𝑅 is 𝐴.) If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same, see brdmqssqs 38623. (Contributed by Peter Mazsa, 9-Aug-2021.) |
| ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | ||
| Theorem | dmqseq 38616 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
| Theorem | dmqseqi 38617 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆) | ||
| Theorem | dmqseqd 38618 | Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
| Theorem | dmqseqeq1 38619 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | ||
| Theorem | dmqseqeq1i 38620 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴) | ||
| Theorem | dmqseqeq1d 38621 | Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | ||
| Theorem | brdmqss 38622 | The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) | ||
| Theorem | brdmqssqs 38623 | If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴)) | ||
| Theorem | n0eldmqs 38624 | The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018.) |
| ⊢ ¬ ∅ ∈ (dom 𝑅 / 𝑅) | ||
| Theorem | qseq 38625* |
The quotient set equal to a class.
This theorem is used when a class 𝐴 is identified with a quotient (dom 𝑅 / 𝑅). In such a situation, every element 𝑢 ∈ 𝐴 is an 𝑅-coset [𝑣]𝑅 for some 𝑣 ∈ dom 𝑅, but there is no requirement that the "witness" 𝑣 be equal to its own block [𝑣]𝑅. 𝐴 is a set of blocks (equivalence classes), not a set of raw witnesses. In particular, when (dom 𝑅 / 𝑅) = 𝐴 is read together with a partition hypothesis 𝑅 Part 𝐴 (defined as dfpart2 38746), 𝐴 is being treated as the set of blocks [𝑣]𝑅; it does not assert any fixed-point condition 𝑣 = [𝑣]𝑅 such as would arise from the mistaken reading 𝑢 ∈ 𝐴 ↔ 𝑢 = [𝑢]𝑅. Cf. dmqsblocks 38830. (Contributed by Peter Mazsa, 19-Oct-2018.) |
| ⊢ ((𝐵 / 𝑅) = 𝐴 ↔ ∀𝑢(𝑢 ∈ 𝐴 ↔ ∃𝑣 ∈ 𝐵 𝑢 = [𝑣]𝑅)) | ||
| Theorem | n0eldmqseq 38626 | The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018.) |
| ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) | ||
| Theorem | n0elim 38627 | Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | ||
| Theorem | n0el3 38628 | Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021.) |
| ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | ||
| Theorem | cnvepresdmqss 38629 | The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴)) | ||
| Theorem | cnvepresdmqs 38630 | The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ ((◡ E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴) | ||
| Theorem | unidmqs 38631 | The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) | ||
| Theorem | unidmqseq 38632 | The union of the domain quotient of a relation is equal to the class 𝐴 if and only if the range is equal to it as well. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 28-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → (∪ (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴))) | ||
| Theorem | dmqseqim 38633 | If the domain quotient of a relation is equal to the class 𝐴, then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = ∪ 𝐴))) | ||
| Theorem | dmqseqim2 38634 | Lemma for erimeq2 38655. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴)))) | ||
| Theorem | releldmqs 38635* | Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))) | ||
| Theorem | eldmqs1cossres 38636* | Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) | ||
| Theorem | releldmqscoss 38637* | Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))) | ||
| Theorem | dmqscoelseq 38638 | Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | ||
| Theorem | dmqs1cosscnvepreseq 38639 | Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ ((dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | ||
| Definition | df-ers 38640 |
Define the class of equivalence relations on domain quotients (or: domain
quotients restricted to equivalence relations).
The present definition of equivalence relation in set.mm df-er 8632 "is not standard", "somewhat cryptic", has no constant 0-ary class and does not follow the traditional transparent reflexive-symmetric-transitive relation way of definition of equivalence. Definitions df-eqvrels 38560, dfeqvrels2 38564, dfeqvrels3 38565 and df-eqvrel 38561, dfeqvrel2 38566, dfeqvrel3 38567 are fully transparent in this regard. However, they lack the domain component (dom 𝑅 = 𝐴) of the present df-er 8632. While we acknowledge the need of a domain component, the present df-er 8632 definition does not utilize the results revealed by the new theorems in the Partition-Equivalence Theorem part below (like pets 38829 and pet 38828). From those theorems follows that the natural domain of equivalence relations is not 𝑅Domain𝐴 (i.e. dom 𝑅 = 𝐴 see brdomaing 35908), but 𝑅 DomainQss 𝐴 (i.e. (dom 𝑅 / 𝑅) = 𝐴, see brdmqss 38622), see erimeq 38656 vs. prter3 38860. While I'm sure we need both equivalence relation df-eqvrels 38560 and equivalence relation on domain quotient df-ers 38640, I'm not sure whether we need a third equivalence relation concept with the present dom 𝑅 = 𝐴 component as well: this needs further investigation. As a default I suppose that these two concepts df-eqvrels 38560 and df-ers 38640 are enough and named the predicate version of the one on domain quotient as the alternate version df-erALTV 38641 of the present df-er 8632. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ Ers = ( DomainQss ↾ EqvRels ) | ||
| Definition | df-erALTV 38641 | Equivalence relation with natural domain predicate, see also the comment of df-ers 38640. Alternate definition is dferALTV2 38645. Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets, see brerser 38654. (Contributed by Peter Mazsa, 12-Aug-2021.) |
| ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) | ||
| Definition | df-comembers 38642 | Define the class of comember equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022.) (Revised by Peter Mazsa, 24-Jul-2023.) |
| ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | ||
| Definition | df-comember 38643 |
Define the comember equivalence relation on the class 𝐴 (or, the
restricted coelement equivalence relation on its domain quotient 𝐴.)
Alternate definitions are dfcomember2 38650 and dfcomember3 38651.
Later on, in an application of set theory I make a distinction between the default elementhood concept and a special membership concept: membership equivalence relation will be an integral part of that membership concept. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 28-Nov-2022.) |
| ⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | ||
| Theorem | brers 38644 | Binary equivalence relation with natural domain, see the comment of df-ers 38640. (Contributed by Peter Mazsa, 23-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) | ||
| Theorem | dferALTV2 38645 | Equivalence relation with natural domain predicate, see the comment of df-ers 38640. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 30-Aug-2021.) |
| ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | ||
| Theorem | erALTVeq1 38646 | Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
| Theorem | erALTVeq1i 38647 | Equality theorem for equivalence relation on domain quotient, inference version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴) | ||
| Theorem | erALTVeq1d 38648 | Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
| Theorem | dfcomember 38649 | Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴) | ||
| Theorem | dfcomember2 38650 | Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| ⊢ ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | dfcomember3 38651 | Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
| ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | eqvreldmqs 38652 | Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
| ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | eqvreldmqs2 38653 | Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | brerser 38654 | Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) | ||
| Theorem | erimeq2 38655 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 38860 in a more convenient form , see also erimeq 38656). (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅)) | ||
| Theorem | erimeq 38656 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 38860 and erimeq2 38655). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅)) | ||
| Definition | df-funss 38657 | Define the class of all function sets (but not necessarily function relations, cf. df-funsALTV 38658). It is used only by df-funsALTV 38658. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels } | ||
| Definition | df-funsALTV 38658 | Define the function relations class, i.e., the class of functions. Alternate definitions are dffunsALTV 38660, ... , dffunsALTV5 38664. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ FunsALTV = ( Funss ∩ Rels ) | ||
| Definition | df-funALTV 38659 |
Define the function relation predicate, i.e., the function predicate.
This definition of the function predicate (based on a more general,
converse reflexive, relation) and the original definition of function in
set.mm df-fun 6488, are always the same, that is
( FunALTV 𝐹 ↔ Fun 𝐹), see funALTVfun 38675.
The element of the class of functions and the function predicate are the same, that is (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹) when 𝐹 is a set, see elfunsALTVfunALTV 38674. Alternate definitions are dffunALTV2 38665, ... , dffunALTV5 38668. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | ||
| Theorem | dffunsALTV 38660 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | ||
| Theorem | dffunsALTV2 38661 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } | ||
| Theorem | dffunsALTV3 38662* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 )}. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦)} | ||
| Theorem | dffunsALTV4 38663* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀𝑥1∃*𝑦1𝑥1𝑓𝑦1}. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} | ||
| Theorem | dffunsALTV5 38664* | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓∀𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]◡𝑓 ∩ [𝑦]◡𝑓) = ∅)} | ||
| Theorem | dffunALTV2 38665 | Alternate definition of the function relation predicate, cf. dfdisjALTV2 38691. (Contributed by Peter Mazsa, 8-Feb-2018.) |
| ⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | ||
| Theorem | dffunALTV3 38666* | Alternate definition of the function relation predicate, cf. dfdisjALTV3 38692. Reproduction of dffun2 6496. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 ) ∧ Rel 𝐹). (Contributed by NM, 29-Dec-1996.) |
| ⊢ ( FunALTV 𝐹 ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹)) | ||
| Theorem | dffunALTV4 38667* | Alternate definition of the function relation predicate, cf. dfdisjALTV4 38693. This is dffun6 6497. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.) |
| ⊢ ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹)) | ||
| Theorem | dffunALTV5 38668* | Alternate definition of the function relation predicate, cf. dfdisjALTV5 38694. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) | ||
| Theorem | elfunsALTV 38669 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTV2 38670 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTV3 38671* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTV4 38672* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTV5 38673* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTVfunALTV 38674 | The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.) |
| ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) | ||
| Theorem | funALTVfun 38675 | Our definition of the function predicate df-funALTV 38659 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6488, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) | ||
| Theorem | funALTVss 38676 | Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) | ||
| Theorem | funALTVeq 38677 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
| Theorem | funALTVeqi 38678 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ( FunALTV 𝐴 ↔ FunALTV 𝐵) | ||
| Theorem | funALTVeqd 38679 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
| Definition | df-disjss 38680 | Define the class of all disjoint sets (but not necessarily disjoint relations, cf. df-disjs 38681). It is used only by df-disjs 38681. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ Disjss = {𝑥 ∣ ≀ ◡𝑥 ∈ CnvRefRels } | ||
| Definition | df-disjs 38681 |
Define the disjoint relations class, i.e., the class of disjoints. We
need Disjs for the definition of Parts and Part
for the
Partition-Equivalence Theorems: this need for Parts as disjoint relations
on their domain quotients is the reason why we must define Disjs
instead of simply using converse functions (cf. dfdisjALTV 38690).
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 38704. Alternate definitions are dfdisjs 38685, ... , dfdisjs5 38689. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ Disjs = ( Disjss ∩ Rels ) | ||
| Definition | df-disjALTV 38682 |
Define the disjoint relation predicate, i.e., the disjoint predicate. A
disjoint relation is a converse function of the relation by dfdisjALTV 38690,
see the comment of df-disjs 38681 why we need disjoint relations instead of
converse functions anyway.
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 38704. Alternate definitions are dfdisjALTV 38690, ... , dfdisjALTV5 38694. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | ||
| Definition | df-eldisjs 38683 | Define the disjoint element relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 38706. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | ||
| Definition | df-eldisj 38684 |
Define the disjoint element relation predicate, i.e., the disjoint
elementhood predicate. Read: the elements of 𝐴 are disjoint. The
element of the disjoint elements class and the disjoint elementhood
predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when
𝐴 is a set, see eleldisjseldisj 38706.
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 38850 with dfeldisj5 38698. See also the comments of dfmembpart2 38747 and of df-parts 38742. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | ||
| Theorem | dfdisjs 38685 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
| ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | ||
| Theorem | dfdisjs2 38686 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } | ||
| Theorem | dfdisjs3 38687* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢∀𝑣∀𝑥((𝑢𝑟𝑥 ∧ 𝑣𝑟𝑥) → 𝑢 = 𝑣)} | ||
| Theorem | dfdisjs4 38688* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥} | ||
| Theorem | dfdisjs5 38689* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)} | ||
| Theorem | dfdisjALTV 38690 | Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 38681 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) | ||
| Theorem | dfdisjALTV2 38691 | Alternate definition of the disjoint relation predicate, cf. dffunALTV2 38665. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | ||
| Theorem | dfdisjALTV3 38692* | Alternate definition of the disjoint relation predicate, cf. dffunALTV3 38666. (Contributed by Peter Mazsa, 28-Jul-2021.) |
| ⊢ ( Disj 𝑅 ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅)) | ||
| Theorem | dfdisjALTV4 38693* | Alternate definition of the disjoint relation predicate, cf. dffunALTV4 38667. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( Disj 𝑅 ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) | ||
| Theorem | dfdisjALTV5 38694* | Alternate definition of the disjoint relation predicate, cf. dffunALTV5 38668. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( Disj 𝑅 ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
| Theorem | dfeldisj2 38695 | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 ↔ ≀ ◡(◡ E ↾ 𝐴) ⊆ I ) | ||
| Theorem | dfeldisj3 38696* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ∀𝑥 ∈ (𝑢 ∩ 𝑣)𝑢 = 𝑣) | ||
| Theorem | dfeldisj4 38697* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) | ||
| Theorem | dfeldisj5 38698* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) | ||
| Theorem | eldisjs 38699 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
| ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eldisjs2 38700 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |