HomeHome Metamath Proof Explorer
Theorem List (p. 387 of 470)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29646)
  Hilbert Space Explorer  Hilbert Space Explorer
(29647-31169)
  Users' Mathboxes  Users' Mathboxes
(31170-46966)
 

Theorem List for Metamath Proof Explorer - 38601-38700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcdleme9b 38601 Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    β‡’   ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ π‘Š ∈ 𝐻)) β†’ 𝐢 ∈ 𝐡)
 
Theoremcdleme9 38602 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐢 and 𝐹 represent s1 and f(s) respectively. In their notation, we prove f(s) ∨ s1 = q ∨ s1. (Contributed by NM, 10-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝐹 ∨ 𝐢) = (𝑄 ∨ 𝐢))
 
Theoremcdleme10 38603 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐷 represents s2. In their notation, we prove s ∨ s2 = s ∨ r. (Contributed by NM, 9-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑆 ∨ 𝐷) = (𝑆 ∨ 𝑅))
 
Theoremcdleme8tN 38604 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝑋 represents t1. In their notation, we prove p ∨ t1 = p ∨ t. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‹ = ((𝑃 ∨ 𝑇) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) β†’ (𝑃 ∨ 𝑋) = (𝑃 ∨ 𝑇))
 
Theoremcdleme9taN 38605 Part of proof of Lemma E in [Crawley] p. 113. 𝑋 represents t1, which we prove is an atom. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‹ = ((𝑃 ∨ 𝑇) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑇)) β†’ 𝑋 ∈ 𝐴)
 
Theoremcdleme9tN 38606 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝑋 and 𝐹 represent t1 and f(t) respectively. In their notation, we prove f(t) ∨ t1 = q ∨ t1. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π‘‹ = ((𝑃 ∨ 𝑇) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ (𝐹 ∨ 𝑋) = (𝑄 ∨ 𝑋))
 
Theoremcdleme10tN 38607 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. π‘Œ represents t2. In their notation, we prove t ∨ t2 = t ∨ r. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) β†’ (𝑇 ∨ π‘Œ) = (𝑇 ∨ 𝑅))
 
Theoremcdleme16aN 38608 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, s ∨ u β‰  t ∨ u. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑆 ∨ π‘ˆ) β‰  (𝑇 ∨ π‘ˆ))
 
Theoremcdleme11a 38609 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 12-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ (𝑆 ∨ π‘ˆ) = (𝑆 ∨ 𝑇))
 
Theoremcdleme11c 38610 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 13-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑃 ≀ (𝑆 ∨ 𝑇))
 
Theoremcdleme11dN 38611 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ∨ 𝑆) β‰  (𝑃 ∨ 𝑇))
 
Theoremcdleme11e 38612 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 13-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π· = ((𝑃 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐢 β‰  𝐷)
 
Theoremcdleme11fN 38613 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π· = ((𝑃 ∨ 𝑇) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐹 β‰  𝐢)
 
Theoremcdleme11g 38614 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 14-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π· = ((𝑃 ∨ 𝑇) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑄 ∨ 𝐹) = (𝑄 ∨ 𝐢))
 
Theoremcdleme11h 38615 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 14-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π· = ((𝑃 ∨ 𝑇) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐹 β‰  𝑄)
 
Theoremcdleme11j 38616 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 14-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π· = ((𝑃 ∨ 𝑇) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐢 ≀ (𝑄 ∨ 𝐹))
 
Theoremcdleme11k 38617 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 15-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π· = ((𝑃 ∨ 𝑇) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐢 = ((𝑄 ∨ 𝐹) ∧ π‘Š))
 
Theoremcdleme11l 38618 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38619. (Contributed by NM, 15-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐹 β‰  𝐺)
 
Theoremcdleme11 38619 Part of proof of Lemma E in [Crawley] p. 113, 1st sentence of 3rd paragraph on p. 114. 𝐹 and 𝐺 represent f(s) and f(t) respectively. Their proof provides no details of our cdleme11a 38609 through cdleme11 38619, so there may be a simpler proof that we have overlooked. (Contributed by NM, 15-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝐹 ∨ 𝐺) = (𝑆 ∨ 𝑇))
 
Theoremcdleme12 38620 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 16-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = π‘ˆ)
 
Theoremcdleme13 38621 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> are centrally perspective." 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 7-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≀ (𝑃 ∨ 𝑄))
 
Theoremcdleme14 38622 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> ... are axially perspective." We apply dalaw 38235 to cdleme13 38621. 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 8-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) ≀ (((𝑇 ∨ 𝑃) ∧ (𝐺 ∨ 𝑄)) ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝐹))))
 
Theoremcdleme15a 38623 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, ((s ∨ p) ∧ (f(s) ∨ q)) ∨ ((t ∨ p) ∧ (f(t) ∨ q))=((p ∨ s1) ∧ (q ∨ s1)) ∨ ((p ∨ t1) ∧ (q ∨ t1)). We represent f(s), f(t), s1, and t1 with 𝐹, 𝐺, 𝐢, and 𝑋 respectively. The order of our operations is slightly different. (Contributed by NM, 9-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π‘‹ = ((𝑃 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (((𝑇 ∨ 𝑃) ∧ (𝐺 ∨ 𝑄)) ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝐹))) = (((𝑃 ∨ 𝑋) ∧ (𝑄 ∨ 𝑋)) ∨ ((𝑃 ∨ 𝐢) ∧ (𝑄 ∨ 𝐢))))
 
Theoremcdleme15b 38624 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, (p ∨ s1) ∧ (q ∨ s1)=s1. We represent s1 with 𝐢. (Contributed by NM, 10-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π‘‹ = ((𝑃 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑃 ∨ 𝐢) ∧ (𝑄 ∨ 𝐢)) = 𝐢)
 
Theoremcdleme15c 38625 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, ((p ∨ s1) ∧ (q ∨ s1)) ∨ ((p ∨ t1) ∧ (q ∨ t1))=s1 ∨ t1. 𝐢 and 𝑋 represent s1 and t1 respectively. The order of our operations is slightly different. (Contributed by NM, 10-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π‘‹ = ((𝑃 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (((𝑃 ∨ 𝑋) ∧ (𝑄 ∨ 𝑋)) ∨ ((𝑃 ∨ 𝐢) ∧ (𝑄 ∨ 𝐢))) = (𝑋 ∨ 𝐢))
 
Theoremcdleme15d 38626 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, s1 ∨ t1 ≀ w. 𝐢 and 𝑋 represent s1 and t1 respectively. The order of our operations is slightly different. (Contributed by NM, 10-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    &   π‘‹ = ((𝑃 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑋 ∨ 𝐢) ≀ π‘Š)
 
Theoremcdleme15 38627 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, (s ∨ t) ∧ (f(s) ∨ f(t)) ≀ w. We use 𝐹, 𝐺 for f(s), f(t) respectively. (Contributed by NM, 10-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) ≀ π‘Š)
 
Theoremcdleme16b 38628 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. It is unclear how this follows from s ∨ u β‰  t ∨ u, as the authors state, and we used a different proof. (Note: the antecedent Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) is not used.) (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐹 β‰  𝐺)
 
Theoremcdleme16c 38629 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 2nd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, s ∨ t ∨ f(s) ∨ f(t)=s ∨ t ∨ u. (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∨ (𝐹 ∨ 𝐺)) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
 
Theoremcdleme16d 38630 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ (f(s) ∨ f(t)) is an atom. (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) ∈ 𝐴)
 
Theoremcdleme16e 38631 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ (f(s) ∨ f(t))=(s ∨ t) ∧ w. (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) = ((𝑆 ∨ 𝑇) ∧ π‘Š))
 
Theoremcdleme16f 38632 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ (f(s) ∨ f(t))=(f(s) ∨ f(t)) ∧ w. (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) = ((𝐹 ∨ 𝐺) ∧ π‘Š))
 
Theoremcdleme16g 38633 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, Eq. (1). 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ w=(f(s) ∨ f(t)) ∧ w. (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) = ((𝐹 ∨ 𝐺) ∧ π‘Š))
 
Theoremcdleme16 38634 Part of proof of Lemma E in [Crawley] p. 113, conclusion of 3rd paragraph on p. 114. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ w=(f(s) ∨ f(t)) ∧ w, whether or not u ≀ s ∨ t. (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) = ((𝐹 ∨ 𝐺) ∧ π‘Š))
 
Theoremcdleme17a 38635 Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺, and 𝐢 represent f(s), fs(p), and s1 respectively. We show, in their notation, fs(p)=(p ∨ q) ∧ (q ∨ s1). (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ 𝐢)))
 
Theoremcdleme17b 38636 Lemma leading to cdleme17c 38637. (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄))
 
Theoremcdleme17c 38637 Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐢 represents s1. We show, in their notation, (p ∨ q) ∧ (q ∨ s1)=q. (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΆ = ((𝑃 ∨ 𝑆) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ 𝐢)) = 𝑄)
 
Theoremcdleme17d1 38638 Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(p) respectively. We show, in their notation, fs(p)=q. (Contributed by NM, 11-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐺 = 𝑄)
 
Theoremcdleme0nex 38639* Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p ∨ q/0 (i.e. the sublattice from 0 to p ∨ q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 38560- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 37691, our (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ) is a shorter way to express π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 = 𝑃 ∨ 𝑅 = 𝑄))
 
Theoremcdleme18a 38640 Part of proof of Lemma E in [Crawley] p. 114, 2nd sentence of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(q) respectively. We show Β¬ fs(q) ≀ w. (Contributed by NM, 12-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝐺 ≀ π‘Š)
 
Theoremcdleme18b 38641 Part of proof of Lemma E in [Crawley] p. 114, 2nd sentence of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(q) respectively. We show Β¬ fs(q) β‰  q. (Contributed by NM, 12-Oct-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐺 β‰  𝑄)
 
Theoremcdleme18c 38642* Part of proof of Lemma E in [Crawley] p. 114, 2nd sentence of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(q) respectively. We show Β¬ fs(q) = p whenever p ∨ q has three atoms under it (implied by the negated existential condition). (Contributed by NM, 10-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐺 = 𝑃)
 
Theoremcdleme22gb 38643 Utility lemma for Lemma E in [Crawley] p. 115. (Contributed by NM, 5-Dec-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))    &   π΅ = (Baseβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐺 ∈ 𝐡)
 
Theoremcdleme18d 38644* Part of proof of Lemma E in [Crawley] p. 114, 4th sentence of 4th paragraph. 𝐹, 𝐺, 𝐷, 𝐸 represent f(s), fs(r), f(t), ft(r) respectively. We show fs(r) = ft(r) for all possible r (which must equal p or q in the case of exactly 3 atoms in p ∨ q/0 , i.e., when Β¬ βˆƒπ‘Ÿ ∈ 𝐴...). (Contributed by NM, 12-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))    &   π· = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   πΈ = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐺 = 𝐸)
 
Theoremcdlemesner 38645 Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 β‰  𝑅)
 
Theoremcdlemedb 38646 Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 20-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π΅ = (Baseβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐷 ∈ 𝐡)
 
Theoremcdlemeda 38647 Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 13-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐷 ∈ 𝐴)
 
Theoremcdlemednpq 38648 Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 18-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝐷 ≀ (𝑃 ∨ 𝑄))
 
TheoremcdlemednuN 38649 Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐷 β‰  π‘ˆ)
 
Theoremcdleme20zN 38650 Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 17-Nov-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑅) ∧ 𝑇) = (0.β€˜πΎ))
 
Theoremcdleme20y 38651 Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 17-Nov-2012.) (Proof shortened by OpenAI, 25-Mar-2020.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑅) ∧ (𝑇 ∨ 𝑅)) = 𝑅)
 
Theoremcdleme19a 38652 Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line. 𝐷 represents s2. In their notation, we prove that if r ≀ s ∨ t, then s2=(s ∨ t) ∧ w. (Contributed by NM, 13-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    β‡’   ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝐷 = ((𝑆 ∨ 𝑇) ∧ π‘Š))
 
Theoremcdleme19b 38653 Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line. 𝐷, 𝐹, 𝐺 represent s2, f(s), f(t). In their notation, we prove that if r ≀ s ∨ t, then s2 ≀ f(s) ∨ f(t). (Contributed by NM, 13-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇)))) β†’ 𝐷 ≀ (𝐹 ∨ 𝐺))
 
Theoremcdleme19c 38654 Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line. 𝐷, 𝐹 represent s2, f(s). We prove f(s) β‰  s2. (Contributed by NM, 13-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐹 β‰  𝐷)
 
Theoremcdleme19d 38655 Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114. 𝐷, 𝐹, 𝐺 represent s2, f(s), f(t). We prove f(s) ∨ s2 = f(s) ∨ f(t). (Contributed by NM, 14-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇)))) β†’ (𝐹 ∨ 𝐷) = (𝐹 ∨ 𝐺))
 
Theoremcdleme19e 38656 Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, line 2. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). We prove f(s) ∨ s2=f(t) ∨ t2. (Contributed by NM, 14-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇)))) β†’ (𝐹 ∨ 𝐷) = (𝐺 ∨ π‘Œ))
 
Theoremcdleme19f 38657 Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, line 3. 𝐷, 𝐹, 𝑁, π‘Œ, 𝐺, 𝑂 represent s2, f(s), fs(r), t2, f(t), ft(r). We prove that if r ≀ s ∨ t, then ft(r) = ft(r). (Contributed by NM, 14-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇)))) β†’ 𝑁 = 𝑂)
 
Theoremcdleme20aN 38658 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 14-Nov-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑉 ∨ 𝐷) = (((𝑆 ∨ 𝑅) ∨ 𝑇) ∧ π‘Š))
 
Theoremcdleme20bN 38659 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). We show v ∨ s2 = v ∨ t2. (Contributed by NM, 15-Nov-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑉 ∨ 𝐷) = (𝑉 ∨ π‘Œ))
 
Theoremcdleme20c 38660 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 15-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐷 ∨ π‘Œ) = (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ π‘Š))
 
Theoremcdleme20d 38661 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 17-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝐹 ∨ 𝐺) ∧ (𝐷 ∨ π‘Œ)) = 𝑉)
 
Theoremcdleme20e 38662 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, 4th line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). We show <f(s),s2,s> and <f(t),t2,t> are centrally perspective. (Contributed by NM, 17-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝐹 ∨ 𝐺) ∧ (𝐷 ∨ π‘Œ)) ≀ (𝑆 ∨ 𝑇))
 
Theoremcdleme20f 38663 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, 4th line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). We show <f(s),s2,s> and <f(t),t2,t> are axially perspective. (Contributed by NM, 17-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝐹 ∨ 𝐷) ∧ (𝐺 ∨ π‘Œ)) ≀ (((𝐷 ∨ 𝑆) ∧ (π‘Œ ∨ 𝑇)) ∨ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺))))
 
Theoremcdleme20g 38664 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, antepenultimate line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 18-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝐷 ∨ 𝑆) ∧ (π‘Œ ∨ 𝑇)) ∨ ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺))) = (((𝑆 ∨ 𝑅) ∧ (𝑇 ∨ 𝑅)) ∨ ((𝑆 ∨ π‘ˆ) ∧ (𝑇 ∨ π‘ˆ))))
 
Theoremcdleme20h 38665 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, antepenultimate line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 18-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ (Β¬ 𝑅 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ (((𝑆 ∨ 𝑅) ∧ (𝑇 ∨ 𝑅)) ∨ ((𝑆 ∨ π‘ˆ) ∧ (𝑇 ∨ π‘ˆ))) = (𝑅 ∨ π‘ˆ))
 
Theoremcdleme20i 38666 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, antepenultimate line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). We show (f(s) ∨ s2) ∧ (f(t) ∨ t2) ≀ p ∨ q. (Contributed by NM, 18-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ (Β¬ 𝑅 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝐹 ∨ 𝐷) ∧ (𝐺 ∨ π‘Œ)) ≀ (𝑃 ∨ 𝑄))
 
Theoremcdleme20j 38667 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). We show s2 β‰  t2. (Contributed by NM, 18-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ Β¬ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝐷 β‰  π‘Œ)
 
Theoremcdleme20k 38668 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, antepenultimate line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 20-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ 𝐷) β‰  (𝑃 ∨ 𝑄))
 
Theoremcdleme20l1 38669 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, penultimate line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t) respectively. (Contributed by NM, 20-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ 𝐷) ∈ (LLinesβ€˜πΎ))
 
Theoremcdleme20l2 38670 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, penultimate line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t) respectively. (Contributed by NM, 20-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ (Β¬ 𝑅 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝐹 ∨ 𝐷) ∧ (𝐺 ∨ π‘Œ)) ∈ 𝐴)
 
Theoremcdleme20l 38671 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, penultimate line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t) respectively. (Contributed by NM, 20-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ (Β¬ 𝑅 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ ((𝐹 ∨ 𝐷) ∧ (𝐺 ∨ π‘Œ)) = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷)))
 
Theoremcdleme20m 38672 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, penultimate line. 𝐷, 𝐹, 𝑁, π‘Œ, 𝐺, 𝑂 represent s2, f(s), fs(r), t2, f(t), ft(r) respectively. We prove that if Β¬ r ≀ s ∨ t and Β¬ u ≀ s ∨ t, then fs(r) = ft(r). (Contributed by NM, 20-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ (Β¬ 𝑅 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ 𝑁 = 𝑂)
 
Theoremcdleme20 38673 Combine cdleme19f 38657 and cdleme20m 38672 to eliminate Β¬ 𝑅 ≀ (𝑆 ∨ 𝑇) condition. (Contributed by NM, 28-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑁 = 𝑂)
 
Theoremcdleme21a 38674 Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 28-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑆 β‰  𝑧)
 
Theoremcdleme21b 38675 Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 28-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ 𝑧 ≀ (𝑃 ∨ 𝑄))
 
Theoremcdleme21c 38676 Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 28-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑧))
 
Theoremcdleme21at 38677 Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)) ∧ (𝑧 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑇 β‰  𝑧)
 
Theoremcdleme21ct 38678 Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ π‘ˆ ≀ (𝑇 ∨ 𝑧))
 
Theoremcdleme21d 38679 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 115, 3rd line. 𝐷, 𝐹, 𝑁, 𝐸, 𝐡, 𝑍 represent s2, f(s), fs(r), z2, f(z), fz(r) respectively. We prove fs(r) = fz(r). (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   π΅ = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   πΈ = ((𝑅 ∨ 𝑧) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐡 ∨ 𝐸))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑁 = 𝑍)
 
Theoremcdleme21e 38680 Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 115, 3rd line. π‘Œ, 𝐺, 𝑂, 𝐸, 𝐡, 𝑍 represent s2, f(s), fs(r), z2, f(z), fz(r) respectively. We prove that if u ≀ s ∨ z, then ft(r) = fz(r). (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   π΅ = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   πΈ = ((𝑅 ∨ 𝑧) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐡 ∨ 𝐸))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑂 = 𝑍)
 
Theoremcdleme21f 38681 Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   π΅ = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   πΈ = ((𝑅 ∨ 𝑧) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐡 ∨ 𝐸))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑁 = 𝑂)
 
Theoremcdleme21g 38682 Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑁 = 𝑂)
 
Theoremcdleme21h 38683* Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ (βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)) β†’ 𝑁 = 𝑂))
 
Theoremcdleme21i 38684* Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)) β†’ 𝑁 = 𝑂))
 
Theoremcdleme21j 38685* Combine cdleme20 38673 and cdleme21i 38684 to eliminate π‘ˆ ≀ (𝑆 ∨ 𝑇) condition. (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑁 = 𝑂)
 
Theoremcdleme21 38686 Part of proof of Lemma E in [Crawley] p. 113, 3rd line on p. 115. 𝐷, 𝐹, 𝑁, π‘Œ, 𝐺, 𝑂 represent s2, f(s), fs(r), t2, f(t), ft(r) respectively. Combine cdleme18d 38644 and cdleme21j 38685 to eliminate existence condition, proving fs(r) = ft(r) with fewer conditions. (Contributed by NM, 29-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑁 = 𝑂)
 
Theoremcdleme21k 38687 Eliminate 𝑆 β‰  𝑇 condition in cdleme21 38686. (Contributed by NM, 26-Dec-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π· = ((𝑅 ∨ 𝑆) ∧ π‘Š)    &   π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑁 = 𝑂)
 
Theoremcdleme22aa 38688 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 3rd line on p. 115. Show that t ∨ v = p ∨ q implies v = u. (Contributed by NM, 2-Dec-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š ∧ 𝑉 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑉 = π‘ˆ)
 
Theoremcdleme22a 38689 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 3rd line on p. 115. Show that t ∨ v = p ∨ q implies v = u. (Contributed by NM, 30-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ 𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄))) β†’ 𝑉 = π‘ˆ)
 
Theoremcdleme22b 38690 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t ∨ v =/= p ∨ q and s ≀ p ∨ q implies Β¬ t ≀ p ∨ q. (Contributed by NM, 2-Dec-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 β‰  𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) β‰  (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑇 ∨ 𝑉) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄)))) β†’ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))
 
Theoremcdleme22cN 38691 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t ∨ v =/= p ∨ q and s ≀ p ∨ q implies Β¬ v ≀ p ∨ q. (Contributed by NM, 3-Dec-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇) ∧ (𝑆 ≀ (𝑇 ∨ 𝑉) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) β‰  (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑉 ≀ (𝑃 ∨ 𝑄))
 
Theoremcdleme22d 38692 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 9th line on p. 115. (Contributed by NM, 4-Dec-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑉 = ((𝑆 ∨ 𝑇) ∧ π‘Š))
 
Theoremcdleme22e 38693 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t ∨ v = p ∨ q, fz(s) ≀ fz(t) ∨ v. (Contributed by NM, 6-Dec-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑧) ∧ π‘Š)))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑁 ≀ (𝑂 ∨ 𝑉))
 
Theoremcdleme22eALTN 38694 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t ∨ v = p ∨ q, fz(s) ≀ fz(t) ∨ v. (Contributed by NM, 6-Dec-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑦 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑦) ∧ π‘Š)))    &   πΊ = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑦) ∧ π‘Š)))    &   π‘‚ = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ Β¬ 𝑦 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š)))) β†’ 𝑁 ≀ (𝑂 ∨ 𝑉))
 
Theoremcdleme22f 38695 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115. 𝐹, 𝑁 represent f(t), ft(s) respectively. If s ≀ t ∨ v, then ft(s) ≀ f(t) ∨ v. (Contributed by NM, 6-Dec-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑁 ≀ (𝐹 ∨ 𝑉))
 
Theoremcdleme22f2 38696 Part of proof of Lemma E in [Crawley] p. 113. cdleme22f 38695 with s and t swapped (this case is not mentioned by them). If s ≀ t ∨ v, then f(s) ≀ fs(t) ∨ v. (Contributed by NM, 7-Dec-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   π‘ = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑇 ∨ 𝑆) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝐹 ≀ (𝑁 ∨ 𝑉))
 
Theoremcdleme22g 38697 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115. 𝐹, 𝐺 represent f(s), f(t) respectively. If s ≀ t ∨ v and Β¬ s ≀ p ∨ q, then f(s) ≀ f(t) ∨ v. (Contributed by NM, 6-Dec-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   πΉ = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))    &   πΊ = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝐹 ≀ (𝐺 ∨ 𝑉))
 
Theoremcdleme23a 38698 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Dec-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑉 ≀ π‘Š)
 
Theoremcdleme23b 38699 Part of proof of Lemma E in [Crawley] p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑉 ∈ 𝐴)
 
Theoremcdleme23c 38700 Part of proof of Lemma E in [Crawley] p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‰ = ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ π‘Š))    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑆 ≀ (𝑇 ∨ 𝑉))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-46966
  Copyright terms: Public domain < Previous  Next >