| Metamath
Proof Explorer Theorem List (p. 387 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eqvrelref 38601 | An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐴) | ||
| Theorem | eqvrelth 38602 | Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | ||
| Theorem | eqvrelcl 38603 | Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | eqvrelthi 38604 | Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | ||
| Theorem | eqvreldisj 38605 | Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| ⊢ ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | ||
| Theorem | qsdisjALTV 38606 | Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.) |
| ⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) ⇒ ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
| Theorem | eqvrelqsel 38607 | If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 28-Dec-2019.) |
| ⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) | ||
| Theorem | eqvrelcoss 38608 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) | ||
| Theorem | eqvrelcoss3 38609* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
| Theorem | eqvrelcoss2 38610 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅) | ||
| Theorem | eqvrelcoss4 38611* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 30-Sep-2021.) |
| ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
| Theorem | dfcoeleqvrels 38612 | Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 38610, eqvrelcoss3 38609 and eqvrelcoss4 38611 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } | ||
| Theorem | dfcoeleqvrel 38613 | Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 38610, eqvrelcoss3 38609 and eqvrelcoss4 38611 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | ||
| Definition | df-redunds 38614* | Define the class of all redundant sets 𝑥 with respect to 𝑦 in 𝑧. For sets, binary relation on the class of all redundant sets (brredunds 38617) is equivalent to satisfying the redundancy predicate (df-redund 38615). (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | ||
| Definition | df-redund 38615 | Define the redundancy predicate. Read: 𝐴 is redundant with respect to 𝐵 in 𝐶. For sets, binary relation on the class of all redundant sets (brredunds 38617) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | ||
| Definition | df-redundp 38616 | Define the redundancy operator for propositions, cf. df-redund 38615. (Contributed by Peter Mazsa, 23-Oct-2022.) |
| ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | ||
| Theorem | brredunds 38617 | Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) | ||
| Theorem | brredundsredund 38618 | For sets, binary relation on the class of all redundant sets (brredunds 38617) is equivalent to satisfying the redundancy predicate (df-redund 38615). (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ 𝐴 Redund 〈𝐵, 𝐶〉)) | ||
| Theorem | redundss3 38619 | Implication of redundancy predicate. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ 𝐷 ⊆ 𝐶 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 → 𝐴 Redund 〈𝐵, 𝐷〉) | ||
| Theorem | redundeq1 38620 | Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ 𝐴 = 𝐷 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) | ||
| Theorem | redundpim3 38621 | Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ (𝜃 → 𝜒) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) → redund (𝜑, 𝜓, 𝜃)) | ||
| Theorem | redundpbi1 38622 | Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ (𝜑 ↔ 𝜃) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒)) | ||
| Theorem | refrelsredund4 38623 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38504) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | ||
| Theorem | refrelsredund2 38624 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38504) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 | ||
| Theorem | refrelsredund3 38625* | The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 38505) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 | ||
| Theorem | refrelredund4 38626 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38506) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | ||
| Theorem | refrelredund2 38627 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38506) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
| Theorem | refrelredund3 38628* | The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 38507) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
| Definition | df-dmqss 38629* | Define the class of domain quotients. Domain quotients are pairs of sets, typically a relation and a set, where the quotient (see df-qs 8677) of the relation on its domain is equal to the set. See comments of df-ers 38655 for the motivation for this definition. (Contributed by Peter Mazsa, 16-Apr-2019.) |
| ⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} | ||
| Definition | df-dmqs 38630 | Define the domain quotient predicate. (Read: the domain quotient of 𝑅 is 𝐴.) If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same, see brdmqssqs 38638. (Contributed by Peter Mazsa, 9-Aug-2021.) |
| ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | ||
| Theorem | dmqseq 38631 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
| Theorem | dmqseqi 38632 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆) | ||
| Theorem | dmqseqd 38633 | Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
| Theorem | dmqseqeq1 38634 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | ||
| Theorem | dmqseqeq1i 38635 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴) | ||
| Theorem | dmqseqeq1d 38636 | Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | ||
| Theorem | brdmqss 38637 | The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) | ||
| Theorem | brdmqssqs 38638 | If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴)) | ||
| Theorem | n0eldmqs 38639 | The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018.) |
| ⊢ ¬ ∅ ∈ (dom 𝑅 / 𝑅) | ||
| Theorem | qseq 38640* |
The quotient set equal to a class.
This theorem is used when a class 𝐴 is identified with a quotient (dom 𝑅 / 𝑅). In such a situation, every element 𝑢 ∈ 𝐴 is an 𝑅-coset [𝑣]𝑅 for some 𝑣 ∈ dom 𝑅, but there is no requirement that the "witness" 𝑣 be equal to its own block [𝑣]𝑅. 𝐴 is a set of blocks (equivalence classes), not a set of raw witnesses. In particular, when (dom 𝑅 / 𝑅) = 𝐴 is read together with a partition hypothesis 𝑅 Part 𝐴 (defined as dfpart2 38761), 𝐴 is being treated as the set of blocks [𝑣]𝑅; it does not assert any fixed-point condition 𝑣 = [𝑣]𝑅 such as would arise from the mistaken reading 𝑢 ∈ 𝐴 ↔ 𝑢 = [𝑢]𝑅. Cf. dmqsblocks 38845. (Contributed by Peter Mazsa, 19-Oct-2018.) |
| ⊢ ((𝐵 / 𝑅) = 𝐴 ↔ ∀𝑢(𝑢 ∈ 𝐴 ↔ ∃𝑣 ∈ 𝐵 𝑢 = [𝑣]𝑅)) | ||
| Theorem | n0eldmqseq 38641 | The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018.) |
| ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) | ||
| Theorem | n0elim 38642 | Implication of that the empty set is not an element of a class. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | ||
| Theorem | n0el3 38643 | Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021.) |
| ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | ||
| Theorem | cnvepresdmqss 38644 | The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴)) | ||
| Theorem | cnvepresdmqs 38645 | The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ ((◡ E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴) | ||
| Theorem | unidmqs 38646 | The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) | ||
| Theorem | unidmqseq 38647 | The union of the domain quotient of a relation is equal to the class 𝐴 if and only if the range is equal to it as well. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 28-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → (∪ (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴))) | ||
| Theorem | dmqseqim 38648 | If the domain quotient of a relation is equal to the class 𝐴, then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = ∪ 𝐴))) | ||
| Theorem | dmqseqim2 38649 | Lemma for erimeq2 38670. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴)))) | ||
| Theorem | releldmqs 38650* | Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))) | ||
| Theorem | eldmqs1cossres 38651* | Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) | ||
| Theorem | releldmqscoss 38652* | Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))) | ||
| Theorem | dmqscoelseq 38653 | Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | ||
| Theorem | dmqs1cosscnvepreseq 38654 | Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ ((dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | ||
| Definition | df-ers 38655 |
Define the class of equivalence relations on domain quotients (or: domain
quotients restricted to equivalence relations).
The present definition of equivalence relation in set.mm df-er 8671 "is not standard", "somewhat cryptic", has no constant 0-ary class and does not follow the traditional transparent reflexive-symmetric-transitive relation way of definition of equivalence. Definitions df-eqvrels 38575, dfeqvrels2 38579, dfeqvrels3 38580 and df-eqvrel 38576, dfeqvrel2 38581, dfeqvrel3 38582 are fully transparent in this regard. However, they lack the domain component (dom 𝑅 = 𝐴) of the present df-er 8671. While we acknowledge the need of a domain component, the present df-er 8671 definition does not utilize the results revealed by the new theorems in the Partition-Equivalence Theorem part below (like pets 38844 and pet 38843). From those theorems follows that the natural domain of equivalence relations is not 𝑅Domain𝐴 (i.e. dom 𝑅 = 𝐴 see brdomaing 35923), but 𝑅 DomainQss 𝐴 (i.e. (dom 𝑅 / 𝑅) = 𝐴, see brdmqss 38637), see erimeq 38671 vs. prter3 38875. While I'm sure we need both equivalence relation df-eqvrels 38575 and equivalence relation on domain quotient df-ers 38655, I'm not sure whether we need a third equivalence relation concept with the present dom 𝑅 = 𝐴 component as well: this needs further investigation. As a default I suppose that these two concepts df-eqvrels 38575 and df-ers 38655 are enough and named the predicate version of the one on domain quotient as the alternate version df-erALTV 38656 of the present df-er 8671. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ Ers = ( DomainQss ↾ EqvRels ) | ||
| Definition | df-erALTV 38656 | Equivalence relation with natural domain predicate, see also the comment of df-ers 38655. Alternate definition is dferALTV2 38660. Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets, see brerser 38669. (Contributed by Peter Mazsa, 12-Aug-2021.) |
| ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) | ||
| Definition | df-comembers 38657 | Define the class of comember equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022.) (Revised by Peter Mazsa, 24-Jul-2023.) |
| ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | ||
| Definition | df-comember 38658 |
Define the comember equivalence relation on the class 𝐴 (or, the
restricted coelement equivalence relation on its domain quotient 𝐴.)
Alternate definitions are dfcomember2 38665 and dfcomember3 38666.
Later on, in an application of set theory I make a distinction between the default elementhood concept and a special membership concept: membership equivalence relation will be an integral part of that membership concept. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 28-Nov-2022.) |
| ⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | ||
| Theorem | brers 38659 | Binary equivalence relation with natural domain, see the comment of df-ers 38655. (Contributed by Peter Mazsa, 23-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) | ||
| Theorem | dferALTV2 38660 | Equivalence relation with natural domain predicate, see the comment of df-ers 38655. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 30-Aug-2021.) |
| ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | ||
| Theorem | erALTVeq1 38661 | Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
| Theorem | erALTVeq1i 38662 | Equality theorem for equivalence relation on domain quotient, inference version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴) | ||
| Theorem | erALTVeq1d 38663 | Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
| Theorem | dfcomember 38664 | Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴) | ||
| Theorem | dfcomember2 38665 | Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| ⊢ ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | dfcomember3 38666 | Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
| ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | eqvreldmqs 38667 | Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
| ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | eqvreldmqs2 38668 | Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | brerser 38669 | Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) | ||
| Theorem | erimeq2 38670 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 38875 in a more convenient form , see also erimeq 38671). (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅)) | ||
| Theorem | erimeq 38671 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 38875 and erimeq2 38670). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅)) | ||
| Definition | df-funss 38672 | Define the class of all function sets (but not necessarily function relations, cf. df-funsALTV 38673). It is used only by df-funsALTV 38673. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels } | ||
| Definition | df-funsALTV 38673 | Define the function relations class, i.e., the class of functions. Alternate definitions are dffunsALTV 38675, ... , dffunsALTV5 38679. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ FunsALTV = ( Funss ∩ Rels ) | ||
| Definition | df-funALTV 38674 |
Define the function relation predicate, i.e., the function predicate.
This definition of the function predicate (based on a more general,
converse reflexive, relation) and the original definition of function in
set.mm df-fun 6513, are always the same, that is
( FunALTV 𝐹 ↔ Fun 𝐹), see funALTVfun 38690.
The element of the class of functions and the function predicate are the same, that is (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹) when 𝐹 is a set, see elfunsALTVfunALTV 38689. Alternate definitions are dffunALTV2 38680, ... , dffunALTV5 38683. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | ||
| Theorem | dffunsALTV 38675 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | ||
| Theorem | dffunsALTV2 38676 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } | ||
| Theorem | dffunsALTV3 38677* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 )}. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦)} | ||
| Theorem | dffunsALTV4 38678* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀𝑥1∃*𝑦1𝑥1𝑓𝑦1}. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} | ||
| Theorem | dffunsALTV5 38679* | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓∀𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]◡𝑓 ∩ [𝑦]◡𝑓) = ∅)} | ||
| Theorem | dffunALTV2 38680 | Alternate definition of the function relation predicate, cf. dfdisjALTV2 38706. (Contributed by Peter Mazsa, 8-Feb-2018.) |
| ⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | ||
| Theorem | dffunALTV3 38681* | Alternate definition of the function relation predicate, cf. dfdisjALTV3 38707. Reproduction of dffun2 6521. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 ) ∧ Rel 𝐹). (Contributed by NM, 29-Dec-1996.) |
| ⊢ ( FunALTV 𝐹 ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹)) | ||
| Theorem | dffunALTV4 38682* | Alternate definition of the function relation predicate, cf. dfdisjALTV4 38708. This is dffun6 6524. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.) |
| ⊢ ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹)) | ||
| Theorem | dffunALTV5 38683* | Alternate definition of the function relation predicate, cf. dfdisjALTV5 38709. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) | ||
| Theorem | elfunsALTV 38684 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTV2 38685 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTV3 38686* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTV4 38687* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTV5 38688* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ 𝐹 ∈ Rels )) | ||
| Theorem | elfunsALTVfunALTV 38689 | The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.) |
| ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) | ||
| Theorem | funALTVfun 38690 | Our definition of the function predicate df-funALTV 38674 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6513, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) | ||
| Theorem | funALTVss 38691 | Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) | ||
| Theorem | funALTVeq 38692 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
| Theorem | funALTVeqi 38693 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ( FunALTV 𝐴 ↔ FunALTV 𝐵) | ||
| Theorem | funALTVeqd 38694 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
| Definition | df-disjss 38695 | Define the class of all disjoint sets (but not necessarily disjoint relations, cf. df-disjs 38696). It is used only by df-disjs 38696. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ Disjss = {𝑥 ∣ ≀ ◡𝑥 ∈ CnvRefRels } | ||
| Definition | df-disjs 38696 |
Define the disjoint relations class, i.e., the class of disjoints. We
need Disjs for the definition of Parts and Part
for the
Partition-Equivalence Theorems: this need for Parts as disjoint relations
on their domain quotients is the reason why we must define Disjs
instead of simply using converse functions (cf. dfdisjALTV 38705).
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 38719. Alternate definitions are dfdisjs 38700, ... , dfdisjs5 38704. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ Disjs = ( Disjss ∩ Rels ) | ||
| Definition | df-disjALTV 38697 |
Define the disjoint relation predicate, i.e., the disjoint predicate. A
disjoint relation is a converse function of the relation by dfdisjALTV 38705,
see the comment of df-disjs 38696 why we need disjoint relations instead of
converse functions anyway.
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 38719. Alternate definitions are dfdisjALTV 38705, ... , dfdisjALTV5 38709. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | ||
| Definition | df-eldisjs 38698 | Define the disjoint element relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 38721. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | ||
| Definition | df-eldisj 38699 |
Define the disjoint element relation predicate, i.e., the disjoint
elementhood predicate. Read: the elements of 𝐴 are disjoint. The
element of the disjoint elements class and the disjoint elementhood
predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when
𝐴 is a set, see eleldisjseldisj 38721.
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 38865 with dfeldisj5 38713. See also the comments of dfmembpart2 38762 and of df-parts 38757. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | ||
| Theorem | dfdisjs 38700 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
| ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |