Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pats | Structured version Visualization version GIF version |
Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
patoms.b | ⊢ 𝐵 = (Base‘𝐾) |
patoms.z | ⊢ 0 = (0.‘𝐾) |
patoms.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
patoms.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
pats | ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐾 ∈ 𝐷 → 𝐾 ∈ V) | |
2 | patoms.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | fveq2 6756 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) | |
4 | patoms.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 3, 4 | eqtr4di 2797 | . . . . 5 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
6 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = ( ⋖ ‘𝐾)) | |
7 | patoms.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | 6, 7 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = 𝐶) |
9 | 8 | breqd 5081 | . . . . . 6 ⊢ (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥 ↔ (0.‘𝑝)𝐶𝑥)) |
10 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑝 = 𝐾 → (0.‘𝑝) = (0.‘𝐾)) | |
11 | patoms.z | . . . . . . . 8 ⊢ 0 = (0.‘𝐾) | |
12 | 10, 11 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑝 = 𝐾 → (0.‘𝑝) = 0 ) |
13 | 12 | breq1d 5080 | . . . . . 6 ⊢ (𝑝 = 𝐾 → ((0.‘𝑝)𝐶𝑥 ↔ 0 𝐶𝑥)) |
14 | 9, 13 | bitrd 278 | . . . . 5 ⊢ (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥 ↔ 0 𝐶𝑥)) |
15 | 5, 14 | rabeqbidv 3410 | . . . 4 ⊢ (𝑝 = 𝐾 → {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥} = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
16 | df-ats 37208 | . . . 4 ⊢ Atoms = (𝑝 ∈ V ↦ {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥}) | |
17 | 4 | fvexi 6770 | . . . . 5 ⊢ 𝐵 ∈ V |
18 | 17 | rabex 5251 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥} ∈ V |
19 | 15, 16, 18 | fvmpt 6857 | . . 3 ⊢ (𝐾 ∈ V → (Atoms‘𝐾) = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
20 | 2, 19 | syl5eq 2791 | . 2 ⊢ (𝐾 ∈ V → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
21 | 1, 20 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 0.cp0 18056 ⋖ ccvr 37203 Atomscatm 37204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ats 37208 |
This theorem is referenced by: isat 37227 |
Copyright terms: Public domain | W3C validator |