Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pats | Structured version Visualization version GIF version |
Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
patoms.b | ⊢ 𝐵 = (Base‘𝐾) |
patoms.z | ⊢ 0 = (0.‘𝐾) |
patoms.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
patoms.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
pats | ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3449 | . 2 ⊢ (𝐾 ∈ 𝐷 → 𝐾 ∈ V) | |
2 | patoms.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | fveq2 6769 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) | |
4 | patoms.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 3, 4 | eqtr4di 2798 | . . . . 5 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
6 | fveq2 6769 | . . . . . . . 8 ⊢ (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = ( ⋖ ‘𝐾)) | |
7 | patoms.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | 6, 7 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = 𝐶) |
9 | 8 | breqd 5090 | . . . . . 6 ⊢ (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥 ↔ (0.‘𝑝)𝐶𝑥)) |
10 | fveq2 6769 | . . . . . . . 8 ⊢ (𝑝 = 𝐾 → (0.‘𝑝) = (0.‘𝐾)) | |
11 | patoms.z | . . . . . . . 8 ⊢ 0 = (0.‘𝐾) | |
12 | 10, 11 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑝 = 𝐾 → (0.‘𝑝) = 0 ) |
13 | 12 | breq1d 5089 | . . . . . 6 ⊢ (𝑝 = 𝐾 → ((0.‘𝑝)𝐶𝑥 ↔ 0 𝐶𝑥)) |
14 | 9, 13 | bitrd 278 | . . . . 5 ⊢ (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥 ↔ 0 𝐶𝑥)) |
15 | 5, 14 | rabeqbidv 3419 | . . . 4 ⊢ (𝑝 = 𝐾 → {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥} = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
16 | df-ats 37275 | . . . 4 ⊢ Atoms = (𝑝 ∈ V ↦ {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥}) | |
17 | 4 | fvexi 6783 | . . . . 5 ⊢ 𝐵 ∈ V |
18 | 17 | rabex 5260 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥} ∈ V |
19 | 15, 16, 18 | fvmpt 6870 | . . 3 ⊢ (𝐾 ∈ V → (Atoms‘𝐾) = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
20 | 2, 19 | eqtrid 2792 | . 2 ⊢ (𝐾 ∈ V → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
21 | 1, 20 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {crab 3070 Vcvv 3431 class class class wbr 5079 ‘cfv 6431 Basecbs 16908 0.cp0 18137 ⋖ ccvr 37270 Atomscatm 37271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6389 df-fun 6433 df-fv 6439 df-ats 37275 |
This theorem is referenced by: isat 37294 |
Copyright terms: Public domain | W3C validator |