|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pats | Structured version Visualization version GIF version | ||
| Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| patoms.b | ⊢ 𝐵 = (Base‘𝐾) | 
| patoms.z | ⊢ 0 = (0.‘𝐾) | 
| patoms.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) | 
| patoms.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| Ref | Expression | 
|---|---|
| pats | ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 3500 | . 2 ⊢ (𝐾 ∈ 𝐷 → 𝐾 ∈ V) | |
| 2 | patoms.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | fveq2 6905 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) | |
| 4 | patoms.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2794 | . . . . 5 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) | 
| 6 | fveq2 6905 | . . . . . . . 8 ⊢ (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = ( ⋖ ‘𝐾)) | |
| 7 | patoms.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 8 | 6, 7 | eqtr4di 2794 | . . . . . . 7 ⊢ (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = 𝐶) | 
| 9 | 8 | breqd 5153 | . . . . . 6 ⊢ (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥 ↔ (0.‘𝑝)𝐶𝑥)) | 
| 10 | fveq2 6905 | . . . . . . . 8 ⊢ (𝑝 = 𝐾 → (0.‘𝑝) = (0.‘𝐾)) | |
| 11 | patoms.z | . . . . . . . 8 ⊢ 0 = (0.‘𝐾) | |
| 12 | 10, 11 | eqtr4di 2794 | . . . . . . 7 ⊢ (𝑝 = 𝐾 → (0.‘𝑝) = 0 ) | 
| 13 | 12 | breq1d 5152 | . . . . . 6 ⊢ (𝑝 = 𝐾 → ((0.‘𝑝)𝐶𝑥 ↔ 0 𝐶𝑥)) | 
| 14 | 9, 13 | bitrd 279 | . . . . 5 ⊢ (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥 ↔ 0 𝐶𝑥)) | 
| 15 | 5, 14 | rabeqbidv 3454 | . . . 4 ⊢ (𝑝 = 𝐾 → {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥} = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) | 
| 16 | df-ats 39269 | . . . 4 ⊢ Atoms = (𝑝 ∈ V ↦ {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥}) | |
| 17 | 4 | fvexi 6919 | . . . . 5 ⊢ 𝐵 ∈ V | 
| 18 | 17 | rabex 5338 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥} ∈ V | 
| 19 | 15, 16, 18 | fvmpt 7015 | . . 3 ⊢ (𝐾 ∈ V → (Atoms‘𝐾) = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) | 
| 20 | 2, 19 | eqtrid 2788 | . 2 ⊢ (𝐾 ∈ V → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) | 
| 21 | 1, 20 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3435 Vcvv 3479 class class class wbr 5142 ‘cfv 6560 Basecbs 17248 0.cp0 18469 ⋖ ccvr 39264 Atomscatm 39265 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ats 39269 | 
| This theorem is referenced by: isat 39288 | 
| Copyright terms: Public domain | W3C validator |