Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pats Structured version   Visualization version   GIF version

Theorem pats 37293
Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
patoms.b 𝐵 = (Base‘𝐾)
patoms.z 0 = (0.‘𝐾)
patoms.c 𝐶 = ( ⋖ ‘𝐾)
patoms.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
pats (𝐾𝐷𝐴 = {𝑥𝐵0 𝐶𝑥})
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝐷(𝑥)   0 (𝑥)

Proof of Theorem pats
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3449 . 2 (𝐾𝐷𝐾 ∈ V)
2 patoms.a . . 3 𝐴 = (Atoms‘𝐾)
3 fveq2 6769 . . . . . 6 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 patoms.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2798 . . . . 5 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
6 fveq2 6769 . . . . . . . 8 (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = ( ⋖ ‘𝐾))
7 patoms.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
86, 7eqtr4di 2798 . . . . . . 7 (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = 𝐶)
98breqd 5090 . . . . . 6 (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥 ↔ (0.‘𝑝)𝐶𝑥))
10 fveq2 6769 . . . . . . . 8 (𝑝 = 𝐾 → (0.‘𝑝) = (0.‘𝐾))
11 patoms.z . . . . . . . 8 0 = (0.‘𝐾)
1210, 11eqtr4di 2798 . . . . . . 7 (𝑝 = 𝐾 → (0.‘𝑝) = 0 )
1312breq1d 5089 . . . . . 6 (𝑝 = 𝐾 → ((0.‘𝑝)𝐶𝑥0 𝐶𝑥))
149, 13bitrd 278 . . . . 5 (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥0 𝐶𝑥))
155, 14rabeqbidv 3419 . . . 4 (𝑝 = 𝐾 → {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥} = {𝑥𝐵0 𝐶𝑥})
16 df-ats 37275 . . . 4 Atoms = (𝑝 ∈ V ↦ {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥})
174fvexi 6783 . . . . 5 𝐵 ∈ V
1817rabex 5260 . . . 4 {𝑥𝐵0 𝐶𝑥} ∈ V
1915, 16, 18fvmpt 6870 . . 3 (𝐾 ∈ V → (Atoms‘𝐾) = {𝑥𝐵0 𝐶𝑥})
202, 19eqtrid 2792 . 2 (𝐾 ∈ V → 𝐴 = {𝑥𝐵0 𝐶𝑥})
211, 20syl 17 1 (𝐾𝐷𝐴 = {𝑥𝐵0 𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {crab 3070  Vcvv 3431   class class class wbr 5079  cfv 6431  Basecbs 16908  0.cp0 18137  ccvr 37270  Atomscatm 37271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6389  df-fun 6433  df-fv 6439  df-ats 37275
This theorem is referenced by:  isat  37294
  Copyright terms: Public domain W3C validator