Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pats Structured version   Visualization version   GIF version

Theorem pats 39287
Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
patoms.b 𝐵 = (Base‘𝐾)
patoms.z 0 = (0.‘𝐾)
patoms.c 𝐶 = ( ⋖ ‘𝐾)
patoms.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
pats (𝐾𝐷𝐴 = {𝑥𝐵0 𝐶𝑥})
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝐷(𝑥)   0 (𝑥)

Proof of Theorem pats
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3500 . 2 (𝐾𝐷𝐾 ∈ V)
2 patoms.a . . 3 𝐴 = (Atoms‘𝐾)
3 fveq2 6905 . . . . . 6 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 patoms.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2794 . . . . 5 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
6 fveq2 6905 . . . . . . . 8 (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = ( ⋖ ‘𝐾))
7 patoms.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
86, 7eqtr4di 2794 . . . . . . 7 (𝑝 = 𝐾 → ( ⋖ ‘𝑝) = 𝐶)
98breqd 5153 . . . . . 6 (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥 ↔ (0.‘𝑝)𝐶𝑥))
10 fveq2 6905 . . . . . . . 8 (𝑝 = 𝐾 → (0.‘𝑝) = (0.‘𝐾))
11 patoms.z . . . . . . . 8 0 = (0.‘𝐾)
1210, 11eqtr4di 2794 . . . . . . 7 (𝑝 = 𝐾 → (0.‘𝑝) = 0 )
1312breq1d 5152 . . . . . 6 (𝑝 = 𝐾 → ((0.‘𝑝)𝐶𝑥0 𝐶𝑥))
149, 13bitrd 279 . . . . 5 (𝑝 = 𝐾 → ((0.‘𝑝)( ⋖ ‘𝑝)𝑥0 𝐶𝑥))
155, 14rabeqbidv 3454 . . . 4 (𝑝 = 𝐾 → {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥} = {𝑥𝐵0 𝐶𝑥})
16 df-ats 39269 . . . 4 Atoms = (𝑝 ∈ V ↦ {𝑥 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑥})
174fvexi 6919 . . . . 5 𝐵 ∈ V
1817rabex 5338 . . . 4 {𝑥𝐵0 𝐶𝑥} ∈ V
1915, 16, 18fvmpt 7015 . . 3 (𝐾 ∈ V → (Atoms‘𝐾) = {𝑥𝐵0 𝐶𝑥})
202, 19eqtrid 2788 . 2 (𝐾 ∈ V → 𝐴 = {𝑥𝐵0 𝐶𝑥})
211, 20syl 17 1 (𝐾𝐷𝐴 = {𝑥𝐵0 𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479   class class class wbr 5142  cfv 6560  Basecbs 17248  0.cp0 18469  ccvr 39264  Atomscatm 39265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568  df-ats 39269
This theorem is referenced by:  isat  39288
  Copyright terms: Public domain W3C validator