Detailed syntax breakdown of Definition df-bases
| Step | Hyp | Ref
| Expression |
| 1 | | ctb 22952 |
. 2
class
TopBases |
| 2 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 4 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 6 | 3, 5 | cin 3950 |
. . . . . 6
class (𝑦 ∩ 𝑧) |
| 7 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 8 | 7 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 9 | 6 | cpw 4600 |
. . . . . . . 8
class 𝒫
(𝑦 ∩ 𝑧) |
| 10 | 8, 9 | cin 3950 |
. . . . . . 7
class (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) |
| 11 | 10 | cuni 4907 |
. . . . . 6
class ∪ (𝑥
∩ 𝒫 (𝑦 ∩
𝑧)) |
| 12 | 6, 11 | wss 3951 |
. . . . 5
wff (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) |
| 13 | 12, 4, 8 | wral 3061 |
. . . 4
wff
∀𝑧 ∈
𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) |
| 14 | 13, 2, 8 | wral 3061 |
. . 3
wff
∀𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) |
| 15 | 14, 7 | cab 2714 |
. 2
class {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} |
| 16 | 1, 15 | wceq 1540 |
1
wff TopBases =
{𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} |