| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isbasisg | Structured version Visualization version GIF version | ||
| Description: Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| isbasisg | ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4176 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
| 2 | 1 | unieqd 4884 | . . . . 5 ⊢ (𝑧 = 𝐵 → ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
| 3 | 2 | sseq2d 3979 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 4 | 3 | raleqbi1dv 3311 | . . 3 ⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 5 | 4 | raleqbi1dv 3311 | . 2 ⊢ (𝑧 = 𝐵 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 6 | df-bases 22833 | . 2 ⊢ TopBases = {𝑧 ∣ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦))} | |
| 7 | 5, 6 | elab2g 3647 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 TopBasesctb 22832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-uni 4872 df-bases 22833 |
| This theorem is referenced by: isbasis2g 22835 basis1 22837 basdif0 22840 baspartn 22841 basqtop 23598 |
| Copyright terms: Public domain | W3C validator |