Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isbasisg | Structured version Visualization version GIF version |
Description: Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
isbasisg | ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4136 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
2 | 1 | unieqd 4850 | . . . . 5 ⊢ (𝑧 = 𝐵 → ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
3 | 2 | sseq2d 3949 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
4 | 3 | raleqbi1dv 3331 | . . 3 ⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
5 | 4 | raleqbi1dv 3331 | . 2 ⊢ (𝑧 = 𝐵 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
6 | df-bases 22004 | . 2 ⊢ TopBases = {𝑧 ∣ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦))} | |
7 | 5, 6 | elab2g 3604 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 TopBasesctb 22003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-bases 22004 |
This theorem is referenced by: isbasis2g 22006 basis1 22008 basdif0 22011 baspartn 22012 basqtop 22770 |
Copyright terms: Public domain | W3C validator |