| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isbasisg | Structured version Visualization version GIF version | ||
| Description: Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| isbasisg | ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4162 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
| 2 | 1 | unieqd 4871 | . . . . 5 ⊢ (𝑧 = 𝐵 → ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
| 3 | 2 | sseq2d 3963 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 4 | 3 | raleqbi1dv 3305 | . . 3 ⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 5 | 4 | raleqbi1dv 3305 | . 2 ⊢ (𝑧 = 𝐵 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 6 | df-bases 22862 | . 2 ⊢ TopBases = {𝑧 ∣ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦))} | |
| 7 | 5, 6 | elab2g 3632 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 TopBasesctb 22861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-uni 4859 df-bases 22862 |
| This theorem is referenced by: isbasis2g 22864 basis1 22866 basdif0 22869 baspartn 22870 basqtop 23627 |
| Copyright terms: Public domain | W3C validator |