MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbasisg Structured version   Visualization version   GIF version

Theorem isbasisg 22883
Description: Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasisg (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
Distinct variable group:   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem isbasisg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ineq1 4188 . . . . . 6 (𝑧 = 𝐵 → (𝑧 ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝑥𝑦)))
21unieqd 4896 . . . . 5 (𝑧 = 𝐵 (𝑧 ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝑥𝑦)))
32sseq2d 3991 . . . 4 (𝑧 = 𝐵 → ((𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
43raleqbi1dv 3317 . . 3 (𝑧 = 𝐵 → (∀𝑦𝑧 (𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
54raleqbi1dv 3317 . 2 (𝑧 = 𝐵 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
6 df-bases 22882 . 2 TopBases = {𝑧 ∣ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦))}
75, 6elab2g 3659 1 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3051  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883  TopBasesctb 22881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-in 3933  df-ss 3943  df-uni 4884  df-bases 22882
This theorem is referenced by:  isbasis2g  22884  basis1  22886  basdif0  22889  baspartn  22890  basqtop  23647
  Copyright terms: Public domain W3C validator