Home | Metamath
Proof Explorer Theorem List (p. 227 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | is1stc 22601* | The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) | ||
Theorem | is1stc2 22602* | An equivalent way of saying "is a first-countable topology." (Contributed by Jeff Hankins, 22-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) | ||
Theorem | 1stctop 22603 | A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) | ||
Theorem | 1stcclb 22604* | A property of points in a first-countable topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
Theorem | 1stcfb 22605* | For any point 𝐴 in a first-countable topology, there is a function 𝑓:ℕ⟶𝐽 enumerating neighborhoods of 𝐴 which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦))) | ||
Theorem | is2ndc 22606* | The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | ||
Theorem | 2ndctop 22607 | A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ Top) | ||
Theorem | 2ndci 22608 | A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) | ||
Theorem | 2ndcsb 22609* | Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) | ||
Theorem | 2ndcredom 22610 | A second-countable space has at most the cardinality of the continuum. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ (𝐽 ∈ 2ndω → 𝐽 ≼ ℝ) | ||
Theorem | 2ndc1stc 22611 | A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) |
⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω) | ||
Theorem | 1stcrestlem 22612* | Lemma for 1stcrest 22613. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
Theorem | 1stcrest 22613 | A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 1stω) | ||
Theorem | 2ndcrest 22614 | A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) | ||
Theorem | 2ndcctbss 22615* | If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝐽 = (topGen‘𝐵) & ⊢ 𝑆 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣))} ⇒ ⊢ ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏))) | ||
Theorem | 2ndcdisj 22616* | Any disjoint family of open sets in a second-countable space is countable. (The sets are required to be nonempty because otherwise there could be many empty sets in the family.) (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω) | ||
Theorem | 2ndcdisj2 22617* | Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → 𝐴 ≼ ω) | ||
Theorem | 2ndcomap 22618* | A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ 2ndω) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) ⇒ ⊢ (𝜑 → 𝐾 ∈ 2ndω) | ||
Theorem | 2ndcsep 22619* | A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) | ||
Theorem | dis2ndc 22620 | A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω) | ||
Theorem | 1stcelcls 22621* | A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 10200. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) | ||
Theorem | 1stccnp 22622* | A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 10200, but only via 1stcelcls 22621, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.) |
⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑃))))) | ||
Theorem | 1stccn 22623* | A mapping 𝑋⟶𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.) |
⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) | ||
Syntax | clly 22624 | Extend class notation with the "locally 𝐴 " predicate of a topological space. |
class Locally 𝐴 | ||
Syntax | cnlly 22625 | Extend class notation with the "N-locally 𝐴 " predicate of a topological space. |
class 𝑛-Locally 𝐴 | ||
Definition | df-lly 22626* | Define a space that is locally 𝐴, where 𝐴 is a topological property like "compact", "connected", or "path-connected". A topological space is locally 𝐴 if every neighborhood of a point contains an open subneighborhood that is 𝐴 in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} | ||
Definition | df-nlly 22627* |
Define a space that is n-locally 𝐴, where 𝐴 is a topological
property like "compact", "connected", or
"path-connected". A
topological space is n-locally 𝐴 if every neighborhood of a point
contains a subneighborhood that is 𝐴 in the subspace topology.
The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} | ||
Theorem | islly 22628* | The property of being a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) | ||
Theorem | isnlly 22629* | The property of being an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
Theorem | llyeq 22630 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵) | ||
Theorem | nllyeq 22631 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵) | ||
Theorem | llytop 22632 | A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) | ||
Theorem | nllytop 22633 | A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) | ||
Theorem | llyi 22634* | The property of a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
Theorem | nllyi 22635* | The property of an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
Theorem | nlly2i 22636* | Eliminate the neighborhood symbol from nllyi 22635. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑠 ∈ 𝒫 𝑈∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) | ||
Theorem | llynlly 22637 | A locally 𝐴 space is n-locally 𝐴: the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ 𝑛-Locally 𝐴) | ||
Theorem | llyssnlly 22638 | A locally 𝐴 space is n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ Locally 𝐴 ⊆ 𝑛-Locally 𝐴 | ||
Theorem | llyss 22639 | The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵) | ||
Theorem | nllyss 22640 | The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐴 ⊆ 𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵) | ||
Theorem | subislly 22641* | The property of a subspace being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) | ||
Theorem | restnlly 22642* | If the property 𝐴 passes to open subspaces, then a space is n-locally 𝐴 iff it is locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴) | ||
Theorem | restlly 22643* | If the property 𝐴 passes to open subspaces, then a space which is 𝐴 is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ Top) ⇒ ⊢ (𝜑 → 𝐴 ⊆ Locally 𝐴) | ||
Theorem | islly2 22644* | An alternative expression for 𝐽 ∈ Locally 𝐴 when 𝐴 passes to open subspaces: A space is locally 𝐴 if every point is contained in an open neighborhood with property 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) | ||
Theorem | llyrest 22645 | An open subspace of a locally 𝐴 space is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Locally 𝐴) | ||
Theorem | nllyrest 22646 | An open subspace of an n-locally 𝐴 space is also n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ 𝑛-Locally 𝐴) | ||
Theorem | loclly 22647 | If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) | ||
Theorem | llyidm 22648 | Idempotence of the "locally" predicate, i.e. being "locally 𝐴 " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ Locally Locally 𝐴 = Locally 𝐴 | ||
Theorem | nllyidm 22649 | Idempotence of the "n-locally" predicate, i.e. being "n-locally 𝐴 " is a local property. (Use loclly 22647 to show 𝑛-Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴 | ||
Theorem | toplly 22650 | A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ Locally Top = Top | ||
Theorem | topnlly 22651 | A topology is n-locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ 𝑛-Locally Top = Top | ||
Theorem | hauslly 22652 | A Hausdorff space is locally Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Locally Haus) | ||
Theorem | hausnlly 22653 | A Hausdorff space is n-locally Hausdorff iff it is locally Hausdorff (both notions are thus referred to as "locally Hausdorff"). (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ 𝑛-Locally Haus ↔ 𝐽 ∈ Locally Haus) | ||
Theorem | hausllycmp 22654 | A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp) | ||
Theorem | cldllycmp 22655 | A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 22646.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ 𝑛-Locally Comp) | ||
Theorem | lly1stc 22656 | First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ Locally 1stω = 1stω | ||
Theorem | dislly 22657* | The discrete space 𝒫 𝑋 is locally 𝐴 if and only if every singleton space has property 𝐴. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴)) | ||
Theorem | disllycmp 22658 | A discrete space is locally compact. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally Comp) | ||
Theorem | dis1stc 22659 | A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) | ||
Theorem | hausmapdom 22660 | If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 23148 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) | ||
Theorem | hauspwdom 22661 | Simplify the cardinal 𝐴↑ℕ of hausmapdom 22660 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵) | ||
Syntax | cref 22662 | Extend class definition to include the refinement relation. |
class Ref | ||
Syntax | cptfin 22663 | Extend class definition to include the class of point-finite covers. |
class PtFin | ||
Syntax | clocfin 22664 | Extend class definition to include the class of locally finite covers. |
class LocFin | ||
Definition | df-ref 22665* | Define the refinement relation. (Contributed by Jeff Hankins, 18-Jan-2010.) |
⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | ||
Definition | df-ptfin 22666* | Define "point-finite." (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ PtFin = {𝑥 ∣ ∀𝑦 ∈ ∪ 𝑥{𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin} | ||
Definition | df-locfin 22667* | Define "locally finite." (Contributed by Jeff Hankins, 21-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ LocFin = (𝑥 ∈ Top ↦ {𝑦 ∣ (∪ 𝑥 = ∪ 𝑦 ∧ ∀𝑝 ∈ ∪ 𝑥∃𝑛 ∈ 𝑥 (𝑝 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))}) | ||
Theorem | refrel 22668 | Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ Rel Ref | ||
Theorem | isref 22669* | The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne 34537. On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) | ||
Theorem | refbas 22670 | A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) | ||
Theorem | refssex 22671* | Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) | ||
Theorem | ssref 22672 | A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) | ||
Theorem | refref 22673 | Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) | ||
Theorem | reftr 22674 | Refinement is transitive. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → 𝐴Ref𝐶) | ||
Theorem | refun0 22675 | Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵) | ||
Theorem | isptfin 22676* | The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) | ||
Theorem | islocfin 22677* | The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) | ||
Theorem | finptfin 22678 | A finite cover is a point-finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ (𝐴 ∈ Fin → 𝐴 ∈ PtFin) | ||
Theorem | ptfinfin 22679* | A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐴 ⇒ ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) | ||
Theorem | finlocfin 22680 | A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) | ||
Theorem | locfintop 22681 | A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) | ||
Theorem | locfinbas 22682 | A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) | ||
Theorem | locfinnei 22683* | A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) | ||
Theorem | lfinpfin 22684 | A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) | ||
Theorem | lfinun 22685 | Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ ∪ 𝐵 ⊆ ∪ 𝐽) → (𝐴 ∪ 𝐵) ∈ (LocFin‘𝐽)) | ||
Theorem | locfincmp 22686 | For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐶 ⇒ ⊢ (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))) | ||
Theorem | unisngl 22687* | Taking the union of the set of singletons recovers the initial set. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ 𝑋 = ∪ 𝐶 | ||
Theorem | dissnref 22688* | The set of singletons is a refinement of any open covering of the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋) → 𝐶Ref𝑌) | ||
Theorem | dissnlocfin 22689* | The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐶 ∈ (LocFin‘𝒫 𝑋)) | ||
Theorem | locfindis 22690 | The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑌 = ∪ 𝐶 ⇒ ⊢ (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌)) | ||
Theorem | locfincf 22691 | A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾)) | ||
Theorem | comppfsc 22692* | A space where every open cover has a point-finite subcover is compact. This is significant in part because it shows half of the proposition that if only half the generalization in the definition of metacompactness (and consequently paracompactness) is performed, one does not obtain any more spaces. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)))) | ||
Syntax | ckgen 22693 | Extend class notation with the compact generator operation. |
class 𝑘Gen | ||
Definition | df-kgen 22694* | Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. 𝑥 ∈ (𝑘Gen‘𝑗), iff the preimage of 𝑥 is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | ||
Theorem | kgenval 22695* | Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) | ||
Theorem | elkgen 22696* | Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | ||
Theorem | kgeni 22697 | Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐴 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) | ||
Theorem | kgentopon 22698 | The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋)) | ||
Theorem | kgenuni 22699 | The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 = ∪ (𝑘Gen‘𝐽)) | ||
Theorem | kgenftop 22700 | The compact generator generates a topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |