Home | Metamath
Proof Explorer Theorem List (p. 227 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | kgentop 22601 | A compactly generated space is a topology. (Note: henceforth we will use the idiom "𝐽 ∈ ran 𝑘Gen " to denote "𝐽 is compactly generated", since as we will show a space is compactly generated iff it is in the range of the compact generator.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) | ||
Theorem | kgenss 22602 | The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | ||
Theorem | kgenhaus 22603 | The compact generator generates another Hausdorff topology given a Hausdorff topology to start from. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ Haus → (𝑘Gen‘𝐽) ∈ Haus) | ||
Theorem | kgencmp 22604 | The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) | ||
Theorem | kgencmp2 22605 | The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ Top → ((𝐽 ↾t 𝐾) ∈ Comp ↔ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp)) | ||
Theorem | kgenidm 22606 | The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽) | ||
Theorem | iskgen2 22607 | A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) | ||
Theorem | iskgen3 22608* | Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of 𝑋 that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) | ||
Theorem | llycmpkgen2 22609* | A locally compact space is compactly generated. (This variant of llycmpkgen 22611 uses the weaker definition of locally compact, "every point has a compact neighborhood", instead of "every point has a local base of compact neighborhoods".) (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) ⇒ ⊢ (𝜑 → 𝐽 ∈ ran 𝑘Gen) | ||
Theorem | cmpkgen 22610 | A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) | ||
Theorem | llycmpkgen 22611 | A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen) | ||
Theorem | 1stckgenlem 22612 | The one-point compactification of ℕ is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) ⇒ ⊢ (𝜑 → (𝐽 ↾t (ran 𝐹 ∪ {𝐴})) ∈ Comp) | ||
Theorem | 1stckgen 22613 | A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen) | ||
Theorem | kgen2ss 22614 | The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾)) | ||
Theorem | kgencn 22615* | A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) | ||
Theorem | kgencn2 22616* | A function 𝐹:𝐽⟶𝐾 from a compactly generated space is continuous iff for all compact spaces 𝑧 and continuous 𝑔:𝑧⟶𝐽, the composite 𝐹 ∘ 𝑔:𝑧⟶𝐾 is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))) | ||
Theorem | kgencn3 22617 | The set of continuous functions from 𝐽 to 𝐾 is unaffected by k-ification of 𝐾, if 𝐽 is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾))) | ||
Theorem | kgen2cn 22618 | A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) | ||
Syntax | ctx 22619 | Extend class notation with the binary topological product operation. |
class ×t | ||
Syntax | cxko 22620 | Extend class notation with a function whose value is the compact-open topology. |
class ↑ko | ||
Definition | df-tx 22621* | Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) | ||
Definition | df-xko 22622* | Define the compact-open topology, which is the natural topology on the set of continuous functions between two topological spaces. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ↑ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟 ∣ (𝑟 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) | ||
Theorem | txval 22623* | Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵)) | ||
Theorem | txuni2 22624* | The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (𝑋 × 𝑌) = ∪ 𝐵 | ||
Theorem | txbasex 22625* | The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) | ||
Theorem | txbas 22626* | The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases) | ||
Theorem | eltx 22627* | A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) | ||
Theorem | txtop 22628 | The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) | ||
Theorem | ptval 22629* | The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘𝐵)) | ||
Theorem | ptpjpre1 22630* | The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015.) |
⊢ 𝑋 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) = X𝑘 ∈ 𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))) | ||
Theorem | elpt 22631* | Elementhood in the bases of a product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ (𝑆 ∈ 𝐵 ↔ ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) | ||
Theorem | elptr 22632* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ 𝐵) | ||
Theorem | elptr2 22633* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝑆 = ∪ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝑆 ∈ 𝐵) | ||
Theorem | ptbasid 22634* | The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) | ||
Theorem | ptuni2 22635* | The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) | ||
Theorem | ptbasin 22636* | The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∩ 𝑌) ∈ 𝐵) | ||
Theorem | ptbasin2 22637* | The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) | ||
Theorem | ptbas 22638* | The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases) | ||
Theorem | ptpjpre2 22639* | The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ∈ 𝐵) | ||
Theorem | ptbasfi 22640* | The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add 𝑋 itself to the list because if 𝐴 is empty we get (fi‘∅) = ∅ while 𝐵 = {∅}.) (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) | ||
Theorem | pttop 22641 | The product topology is a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∏t‘𝐹) ∈ Top) | ||
Theorem | ptopn 22642* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝑆 = ∪ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝑆 ∈ (∏t‘𝐹)) | ||
Theorem | ptopn2 22643* | A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) | ||
Theorem | xkotf 22644* | Functionality of function 𝑇. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) | ||
Theorem | xkobval 22645* | Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} | ||
Theorem | xkoval 22646* | Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran 𝑇))) | ||
Theorem | xkotop 22647 | The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) | ||
Theorem | xkoopn 22648* | A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ (𝜑 → 𝑅 ∈ Top) & ⊢ (𝜑 → 𝑆 ∈ Top) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑅 ↾t 𝐴) ∈ Comp) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} ∈ (𝑆 ↑ko 𝑅)) | ||
Theorem | txtopi 22649 | The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.) |
⊢ 𝑅 ∈ Top & ⊢ 𝑆 ∈ Top ⇒ ⊢ (𝑅 ×t 𝑆) ∈ Top | ||
Theorem | txtopon 22650 | The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) | ||
Theorem | txuni 22651 | The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) | ||
Theorem | txunii 22652 | The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.) |
⊢ 𝑅 ∈ Top & ⊢ 𝑆 ∈ Top & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) | ||
Theorem | ptuni 22653* | The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐽 = (∏t‘𝐹) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑥 ∈ 𝐴 ∪ (𝐹‘𝑥) = ∪ 𝐽) | ||
Theorem | ptunimpt 22654* | Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) | ||
Theorem | pttopon 22655* | The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵)) | ||
Theorem | pttoponconst 22656 | The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) | ||
Theorem | ptuniconst 22657 | The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) & ⊢ 𝑋 = ∪ 𝑅 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → (𝑋 ↑m 𝐴) = ∪ 𝐽) | ||
Theorem | xkouni 22658 | The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝐽 = (𝑆 ↑ko 𝑅) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = ∪ 𝐽) | ||
Theorem | xkotopon 22659 | The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐽 = (𝑆 ↑ko 𝑅) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) | ||
Theorem | ptval2 22660* | The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.) |
⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐺 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺)))) | ||
Theorem | txopn 22661 | The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆)) | ||
Theorem | txcld 22662 | The product of two closed sets is closed in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆))) | ||
Theorem | txcls 22663 | Closure of a rectangle in the product topology. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)) = (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) | ||
Theorem | txss12 22664 | Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷)) | ||
Theorem | txbasval 22665 | It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆)) | ||
Theorem | neitx 22666 | The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷))) | ||
Theorem | txcnpi 22667* | Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉)) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈))) | ||
Theorem | tx1cn 22668 | Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) | ||
Theorem | tx2cn 22669 | Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) | ||
Theorem | ptpjcn 22670* | Continuity of a projection map into a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝑌 = ∪ 𝐽 & ⊢ 𝐽 = (∏t‘𝐹) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ∈ (𝐽 Cn (𝐹‘𝐼))) | ||
Theorem | ptpjopn 22671* | The projection map is an open map. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑌 = ∪ 𝐽 & ⊢ 𝐽 = (∏t‘𝐹) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) “ 𝑈) ∈ (𝐹‘𝐼)) | ||
Theorem | ptcld 22672* | A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘𝐹))) | ||
Theorem | ptcldmpt 22673* | A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) | ||
Theorem | ptclsg 22674* | The closure of a box in the product topology is the box formed from the closures of the factors. The proof uses the axiom of choice; the last hypothesis is the choice assumption. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) | ||
Theorem | ptcls 22675* | The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) | ||
Theorem | dfac14lem 22676* | Lemma for dfac14 22677. By equipping 𝑆 ∪ {𝑃} for some 𝑃 ∉ 𝑆 with the particular point topology, we can show that 𝑃 is in the closure of 𝑆; hence the sequence 𝑃(𝑥) is in the product of the closures, and we can utilize this instance of ptcls 22675 to extract an element of the closure of X𝑘 ∈ 𝐼𝑆. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) & ⊢ 𝑃 = 𝒫 ∪ 𝑆 & ⊢ 𝑅 = {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃 ∈ 𝑦 → 𝑦 = (𝑆 ∪ {𝑃}))} & ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ (𝜑 → ((cls‘𝐽)‘X𝑥 ∈ 𝐼 𝑆) = X𝑥 ∈ 𝐼 ((cls‘𝑅)‘𝑆)) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) | ||
Theorem | dfac14 22677* | Theorem ptcls 22675 is an equivalent of the axiom of choice. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) | ||
Theorem | xkoccn 22678* | The "constant function" function which maps 𝑥 ∈ 𝑌 to the constant function 𝑧 ∈ 𝑋 ↦ 𝑥 is a continuous function from 𝑋 into the space of continuous functions from 𝑌 to 𝑋. This can also be understood as the currying of the first projection function. (The currying of the second projection function is 𝑥 ∈ 𝑌 ↦ (𝑧 ∈ 𝑋 ↦ 𝑧), which we already know is continuous because it is a constant function.) (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆 ↑ko 𝑅))) | ||
Theorem | txcnp 22679* | If two functions are continuous at 𝐷, then the ordered pair of them is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷)) | ||
Theorem | ptcnplem 22680* | Lemma for ptcnp 22681. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐾 = (∏t‘𝐹) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶Top) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) & ⊢ Ⅎ𝑘𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝐺 Fn 𝐼) & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ Fin) & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → (𝐺‘𝑘) = ∪ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) | ||
Theorem | ptcnp 22681* | If every projection of a function is continuous at 𝐷, then the function itself is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐾 = (∏t‘𝐹) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶Top) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷)) | ||
Theorem | upxp 22682* | Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝑃 = (1st ↾ (𝐵 × 𝐶)) & ⊢ 𝑄 = (2nd ↾ (𝐵 × 𝐶)) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | ||
Theorem | txcnmpt 22683* | A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑊 = ∪ 𝑈 & ⊢ 𝐻 = (𝑥 ∈ 𝑊 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⇒ ⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆))) | ||
Theorem | uptx 22684* | Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×t 𝑆) & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ 𝑍 = (𝑋 × 𝑌) & ⊢ 𝑃 = (1st ↾ 𝑍) & ⊢ 𝑄 = (2nd ↾ 𝑍) ⇒ ⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | ||
Theorem | txcn 22685 | A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ 𝑍 = (𝑋 × 𝑌) & ⊢ 𝑊 = ∪ 𝑈 & ⊢ 𝑃 = (1st ↾ 𝑍) & ⊢ 𝑄 = (2nd ↾ 𝑍) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) | ||
Theorem | ptcn 22686* | If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐾 = (∏t‘𝐹) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | prdstopn 22687 | Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ 𝑂 = (TopOpen‘𝑌) ⇒ ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) | ||
Theorem | prdstps 22688 | A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopSp) | ||
Theorem | pwstps 22689 | A structure power of a topological space is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ TopSp) | ||
Theorem | txrest 22690 | The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅 ↾t 𝐴) ×t (𝑆 ↾t 𝐵))) | ||
Theorem | txdis 22691 | The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵)) | ||
Theorem | txindislem 22692 | Lemma for txindis 22693. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵)) | ||
Theorem | txindis 22693 | The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)} | ||
Theorem | txdis1cn 22694* | A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝐹 Fn (𝑋 × 𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾)) | ||
Theorem | txlly 22695* | If the property 𝐴 is preserved under topological products, then so is the property of being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴) ⇒ ⊢ ((𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Locally 𝐴) | ||
Theorem | txnlly 22696* | If the property 𝐴 is preserved under topological products, then so is the property of being n-locally 𝐴. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴) ⇒ ⊢ ((𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴) → (𝑅 ×t 𝑆) ∈ 𝑛-Locally 𝐴) | ||
Theorem | pthaus 22697 | The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Haus) → (∏t‘𝐹) ∈ Haus) | ||
Theorem | ptrescn 22698* | Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝐾 = (∏t‘(𝐹 ↾ 𝐵)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ 𝑋 ↦ (𝑥 ↾ 𝐵)) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | txtube 22699* | The "tube lemma". If 𝑋 is compact and there is an open set 𝑈 containing the line 𝑋 × {𝐴}, then there is a "tube" 𝑋 × 𝑢 for some neighborhood 𝑢 of 𝐴 which is entirely contained within 𝑈. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Top) & ⊢ (𝜑 → 𝑈 ∈ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × {𝐴}) ⊆ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)) | ||
Theorem | txcmplem1 22700* | Lemma for txcmp 22702. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Comp) & ⊢ (𝜑 → 𝑊 ⊆ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |