MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbasis2g Structured version   Visualization version   GIF version

Theorem isbasis2g 22671
Description: Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasis2g (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem isbasis2g
StepHypRef Expression
1 isbasisg 22670 . 2 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
2 dfss3 3969 . . . 4 ((𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑧 ∈ (𝑥𝑦)𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)))
3 elin 3963 . . . . . . . . . 10 (𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑤𝐵𝑤 ∈ 𝒫 (𝑥𝑦)))
4 velpw 4606 . . . . . . . . . . 11 (𝑤 ∈ 𝒫 (𝑥𝑦) ↔ 𝑤 ⊆ (𝑥𝑦))
54anbi2i 621 . . . . . . . . . 10 ((𝑤𝐵𝑤 ∈ 𝒫 (𝑥𝑦)) ↔ (𝑤𝐵𝑤 ⊆ (𝑥𝑦)))
63, 5bitri 274 . . . . . . . . 9 (𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑤𝐵𝑤 ⊆ (𝑥𝑦)))
76anbi2i 621 . . . . . . . 8 ((𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))) ↔ (𝑧𝑤 ∧ (𝑤𝐵𝑤 ⊆ (𝑥𝑦))))
8 an12 641 . . . . . . . 8 ((𝑧𝑤 ∧ (𝑤𝐵𝑤 ⊆ (𝑥𝑦))) ↔ (𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
97, 8bitri 274 . . . . . . 7 ((𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))) ↔ (𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
109exbii 1848 . . . . . 6 (∃𝑤(𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))) ↔ ∃𝑤(𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
11 eluni 4910 . . . . . 6 (𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))))
12 df-rex 3069 . . . . . 6 (∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ ∃𝑤(𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1310, 11, 123bitr4i 302 . . . . 5 (𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1413ralbii 3091 . . . 4 (∀𝑧 ∈ (𝑥𝑦)𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
152, 14bitri 274 . . 3 ((𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
16152ralbii 3126 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
171, 16bitrdi 286 1 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wex 1779  wcel 2104  wral 3059  wrex 3068  cin 3946  wss 3947  𝒫 cpw 4601   cuni 4907  TopBasesctb 22668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-in 3954  df-ss 3964  df-pw 4603  df-uni 4908  df-bases 22669
This theorem is referenced by:  isbasis3g  22672  basis2  22674  fiinbas  22675  tgclb  22693  topbas  22695  restbas  22882  txbas  23291  blbas  24156
  Copyright terms: Public domain W3C validator