MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bc Structured version   Visualization version   GIF version

Definition df-bc 14319
Description: Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 30379).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

Assertion
Ref Expression
df-bc C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-bc
StepHypRef Expression
1 cbc 14318 . 2 class C
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 12499 . . 3 class 0
5 cz 12586 . . 3 class
63cv 1539 . . . . 5 class 𝑘
7 cc0 11127 . . . . . 6 class 0
82cv 1539 . . . . . 6 class 𝑛
9 cfz 13522 . . . . . 6 class ...
107, 8, 9co 7403 . . . . 5 class (0...𝑛)
116, 10wcel 2108 . . . 4 wff 𝑘 ∈ (0...𝑛)
12 cfa 14289 . . . . . 6 class !
138, 12cfv 6530 . . . . 5 class (!‘𝑛)
14 cmin 11464 . . . . . . . 8 class
158, 6, 14co 7403 . . . . . . 7 class (𝑛𝑘)
1615, 12cfv 6530 . . . . . 6 class (!‘(𝑛𝑘))
176, 12cfv 6530 . . . . . 6 class (!‘𝑘)
18 cmul 11132 . . . . . 6 class ·
1916, 17, 18co 7403 . . . . 5 class ((!‘(𝑛𝑘)) · (!‘𝑘))
20 cdiv 11892 . . . . 5 class /
2113, 19, 20co 7403 . . . 4 class ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘)))
2211, 21, 7cif 4500 . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0)
232, 3, 4, 5, 22cmpo 7405 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
241, 23wceq 1540 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Colors of variables: wff setvar class
This definition is referenced by:  bcval  14320
  Copyright terms: Public domain W3C validator