MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bc Structured version   Visualization version   GIF version

Definition df-bc 13310
Description: Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 27640).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". (𝑁C𝐾) is read "𝑁 choose 𝐾." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

Assertion
Ref Expression
df-bc C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-bc
StepHypRef Expression
1 cbc 13309 . 2 class C
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 11559 . . 3 class 0
5 cz 11643 . . 3 class
63cv 1636 . . . . 5 class 𝑘
7 cc0 10221 . . . . . 6 class 0
82cv 1636 . . . . . 6 class 𝑛
9 cfz 12549 . . . . . 6 class ...
107, 8, 9co 6874 . . . . 5 class (0...𝑛)
116, 10wcel 2156 . . . 4 wff 𝑘 ∈ (0...𝑛)
12 cfa 13280 . . . . . 6 class !
138, 12cfv 6101 . . . . 5 class (!‘𝑛)
14 cmin 10551 . . . . . . . 8 class
158, 6, 14co 6874 . . . . . . 7 class (𝑛𝑘)
1615, 12cfv 6101 . . . . . 6 class (!‘(𝑛𝑘))
176, 12cfv 6101 . . . . . 6 class (!‘𝑘)
18 cmul 10226 . . . . . 6 class ·
1916, 17, 18co 6874 . . . . 5 class ((!‘(𝑛𝑘)) · (!‘𝑘))
20 cdiv 10969 . . . . 5 class /
2113, 19, 20co 6874 . . . 4 class ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘)))
2211, 21, 7cif 4279 . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0)
232, 3, 4, 5, 22cmpt2 6876 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
241, 23wceq 1637 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Colors of variables: wff setvar class
This definition is referenced by:  bcval  13311
  Copyright terms: Public domain W3C validator