MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bc Structured version   Visualization version   GIF version

Definition df-bc 14207
Description: Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 30427).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

Assertion
Ref Expression
df-bc C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-bc
StepHypRef Expression
1 cbc 14206 . 2 class C
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 12378 . . 3 class 0
5 cz 12465 . . 3 class
63cv 1540 . . . . 5 class 𝑘
7 cc0 11003 . . . . . 6 class 0
82cv 1540 . . . . . 6 class 𝑛
9 cfz 13404 . . . . . 6 class ...
107, 8, 9co 7346 . . . . 5 class (0...𝑛)
116, 10wcel 2111 . . . 4 wff 𝑘 ∈ (0...𝑛)
12 cfa 14177 . . . . . 6 class !
138, 12cfv 6481 . . . . 5 class (!‘𝑛)
14 cmin 11341 . . . . . . . 8 class
158, 6, 14co 7346 . . . . . . 7 class (𝑛𝑘)
1615, 12cfv 6481 . . . . . 6 class (!‘(𝑛𝑘))
176, 12cfv 6481 . . . . . 6 class (!‘𝑘)
18 cmul 11008 . . . . . 6 class ·
1916, 17, 18co 7346 . . . . 5 class ((!‘(𝑛𝑘)) · (!‘𝑘))
20 cdiv 11771 . . . . 5 class /
2113, 19, 20co 7346 . . . 4 class ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘)))
2211, 21, 7cif 4475 . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0)
232, 3, 4, 5, 22cmpo 7348 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
241, 23wceq 1541 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Colors of variables: wff setvar class
This definition is referenced by:  bcval  14208
  Copyright terms: Public domain W3C validator