| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-bc | Structured version Visualization version GIF version | ||
| Description: Define the binomial
coefficient operation. For example,
(5C3) = 10 (ex-bc 30434).
In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘 ≤ 𝑛 does not hold. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| df-bc | ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbc 14211 | . 2 class C | |
| 2 | vn | . . 3 setvar 𝑛 | |
| 3 | vk | . . 3 setvar 𝑘 | |
| 4 | cn0 12388 | . . 3 class ℕ0 | |
| 5 | cz 12475 | . . 3 class ℤ | |
| 6 | 3 | cv 1540 | . . . . 5 class 𝑘 |
| 7 | cc0 11013 | . . . . . 6 class 0 | |
| 8 | 2 | cv 1540 | . . . . . 6 class 𝑛 |
| 9 | cfz 13409 | . . . . . 6 class ... | |
| 10 | 7, 8, 9 | co 7352 | . . . . 5 class (0...𝑛) |
| 11 | 6, 10 | wcel 2113 | . . . 4 wff 𝑘 ∈ (0...𝑛) |
| 12 | cfa 14182 | . . . . . 6 class ! | |
| 13 | 8, 12 | cfv 6486 | . . . . 5 class (!‘𝑛) |
| 14 | cmin 11351 | . . . . . . . 8 class − | |
| 15 | 8, 6, 14 | co 7352 | . . . . . . 7 class (𝑛 − 𝑘) |
| 16 | 15, 12 | cfv 6486 | . . . . . 6 class (!‘(𝑛 − 𝑘)) |
| 17 | 6, 12 | cfv 6486 | . . . . . 6 class (!‘𝑘) |
| 18 | cmul 11018 | . . . . . 6 class · | |
| 19 | 16, 17, 18 | co 7352 | . . . . 5 class ((!‘(𝑛 − 𝑘)) · (!‘𝑘)) |
| 20 | cdiv 11781 | . . . . 5 class / | |
| 21 | 13, 19, 20 | co 7352 | . . . 4 class ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))) |
| 22 | 11, 21, 7 | cif 4474 | . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0) |
| 23 | 2, 3, 4, 5, 22 | cmpo 7354 | . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
| 24 | 1, 23 | wceq 1541 | 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bcval 14213 |
| Copyright terms: Public domain | W3C validator |