MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bc Structured version   Visualization version   GIF version

Definition df-bc 14275
Description: Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 30388).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

Assertion
Ref Expression
df-bc C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-bc
StepHypRef Expression
1 cbc 14274 . 2 class C
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 12449 . . 3 class 0
5 cz 12536 . . 3 class
63cv 1539 . . . . 5 class 𝑘
7 cc0 11075 . . . . . 6 class 0
82cv 1539 . . . . . 6 class 𝑛
9 cfz 13475 . . . . . 6 class ...
107, 8, 9co 7390 . . . . 5 class (0...𝑛)
116, 10wcel 2109 . . . 4 wff 𝑘 ∈ (0...𝑛)
12 cfa 14245 . . . . . 6 class !
138, 12cfv 6514 . . . . 5 class (!‘𝑛)
14 cmin 11412 . . . . . . . 8 class
158, 6, 14co 7390 . . . . . . 7 class (𝑛𝑘)
1615, 12cfv 6514 . . . . . 6 class (!‘(𝑛𝑘))
176, 12cfv 6514 . . . . . 6 class (!‘𝑘)
18 cmul 11080 . . . . . 6 class ·
1916, 17, 18co 7390 . . . . 5 class ((!‘(𝑛𝑘)) · (!‘𝑘))
20 cdiv 11842 . . . . 5 class /
2113, 19, 20co 7390 . . . 4 class ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘)))
2211, 21, 7cif 4491 . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0)
232, 3, 4, 5, 22cmpo 7392 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
241, 23wceq 1540 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Colors of variables: wff setvar class
This definition is referenced by:  bcval  14276
  Copyright terms: Public domain W3C validator