MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bc Structured version   Visualization version   GIF version

Definition df-bc 14352
Description: Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 30484).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

Assertion
Ref Expression
df-bc C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-bc
StepHypRef Expression
1 cbc 14351 . 2 class C
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 12553 . . 3 class 0
5 cz 12639 . . 3 class
63cv 1536 . . . . 5 class 𝑘
7 cc0 11184 . . . . . 6 class 0
82cv 1536 . . . . . 6 class 𝑛
9 cfz 13567 . . . . . 6 class ...
107, 8, 9co 7448 . . . . 5 class (0...𝑛)
116, 10wcel 2108 . . . 4 wff 𝑘 ∈ (0...𝑛)
12 cfa 14322 . . . . . 6 class !
138, 12cfv 6573 . . . . 5 class (!‘𝑛)
14 cmin 11520 . . . . . . . 8 class
158, 6, 14co 7448 . . . . . . 7 class (𝑛𝑘)
1615, 12cfv 6573 . . . . . 6 class (!‘(𝑛𝑘))
176, 12cfv 6573 . . . . . 6 class (!‘𝑘)
18 cmul 11189 . . . . . 6 class ·
1916, 17, 18co 7448 . . . . 5 class ((!‘(𝑛𝑘)) · (!‘𝑘))
20 cdiv 11947 . . . . 5 class /
2113, 19, 20co 7448 . . . 4 class ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘)))
2211, 21, 7cif 4548 . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0)
232, 3, 4, 5, 22cmpo 7450 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
241, 23wceq 1537 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Colors of variables: wff setvar class
This definition is referenced by:  bcval  14353
  Copyright terms: Public domain W3C validator