MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bc Structured version   Visualization version   GIF version

Definition df-bc 14268
Description: Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 30381).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

Assertion
Ref Expression
df-bc C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-bc
StepHypRef Expression
1 cbc 14267 . 2 class C
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 12442 . . 3 class 0
5 cz 12529 . . 3 class
63cv 1539 . . . . 5 class 𝑘
7 cc0 11068 . . . . . 6 class 0
82cv 1539 . . . . . 6 class 𝑛
9 cfz 13468 . . . . . 6 class ...
107, 8, 9co 7387 . . . . 5 class (0...𝑛)
116, 10wcel 2109 . . . 4 wff 𝑘 ∈ (0...𝑛)
12 cfa 14238 . . . . . 6 class !
138, 12cfv 6511 . . . . 5 class (!‘𝑛)
14 cmin 11405 . . . . . . . 8 class
158, 6, 14co 7387 . . . . . . 7 class (𝑛𝑘)
1615, 12cfv 6511 . . . . . 6 class (!‘(𝑛𝑘))
176, 12cfv 6511 . . . . . 6 class (!‘𝑘)
18 cmul 11073 . . . . . 6 class ·
1916, 17, 18co 7387 . . . . 5 class ((!‘(𝑛𝑘)) · (!‘𝑘))
20 cdiv 11835 . . . . 5 class /
2113, 19, 20co 7387 . . . 4 class ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘)))
2211, 21, 7cif 4488 . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0)
232, 3, 4, 5, 22cmpo 7389 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
241, 23wceq 1540 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Colors of variables: wff setvar class
This definition is referenced by:  bcval  14269
  Copyright terms: Public domain W3C validator