MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bc Structured version   Visualization version   GIF version

Definition df-bc 14228
Description: Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 30414).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

Assertion
Ref Expression
df-bc C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-bc
StepHypRef Expression
1 cbc 14227 . 2 class C
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 12402 . . 3 class 0
5 cz 12489 . . 3 class
63cv 1539 . . . . 5 class 𝑘
7 cc0 11028 . . . . . 6 class 0
82cv 1539 . . . . . 6 class 𝑛
9 cfz 13428 . . . . . 6 class ...
107, 8, 9co 7353 . . . . 5 class (0...𝑛)
116, 10wcel 2109 . . . 4 wff 𝑘 ∈ (0...𝑛)
12 cfa 14198 . . . . . 6 class !
138, 12cfv 6486 . . . . 5 class (!‘𝑛)
14 cmin 11365 . . . . . . . 8 class
158, 6, 14co 7353 . . . . . . 7 class (𝑛𝑘)
1615, 12cfv 6486 . . . . . 6 class (!‘(𝑛𝑘))
176, 12cfv 6486 . . . . . 6 class (!‘𝑘)
18 cmul 11033 . . . . . 6 class ·
1916, 17, 18co 7353 . . . . 5 class ((!‘(𝑛𝑘)) · (!‘𝑘))
20 cdiv 11795 . . . . 5 class /
2113, 19, 20co 7353 . . . 4 class ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘)))
2211, 21, 7cif 4478 . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0)
232, 3, 4, 5, 22cmpo 7355 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
241, 23wceq 1540 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Colors of variables: wff setvar class
This definition is referenced by:  bcval  14229
  Copyright terms: Public domain W3C validator