| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-bc | Structured version Visualization version GIF version | ||
| Description: Define the binomial
coefficient operation. For example,
(5C3) = 10 (ex-bc 30379).
In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘 ≤ 𝑛 does not hold. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| df-bc | ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbc 14318 | . 2 class C | |
| 2 | vn | . . 3 setvar 𝑛 | |
| 3 | vk | . . 3 setvar 𝑘 | |
| 4 | cn0 12499 | . . 3 class ℕ0 | |
| 5 | cz 12586 | . . 3 class ℤ | |
| 6 | 3 | cv 1539 | . . . . 5 class 𝑘 |
| 7 | cc0 11127 | . . . . . 6 class 0 | |
| 8 | 2 | cv 1539 | . . . . . 6 class 𝑛 |
| 9 | cfz 13522 | . . . . . 6 class ... | |
| 10 | 7, 8, 9 | co 7403 | . . . . 5 class (0...𝑛) |
| 11 | 6, 10 | wcel 2108 | . . . 4 wff 𝑘 ∈ (0...𝑛) |
| 12 | cfa 14289 | . . . . . 6 class ! | |
| 13 | 8, 12 | cfv 6530 | . . . . 5 class (!‘𝑛) |
| 14 | cmin 11464 | . . . . . . . 8 class − | |
| 15 | 8, 6, 14 | co 7403 | . . . . . . 7 class (𝑛 − 𝑘) |
| 16 | 15, 12 | cfv 6530 | . . . . . 6 class (!‘(𝑛 − 𝑘)) |
| 17 | 6, 12 | cfv 6530 | . . . . . 6 class (!‘𝑘) |
| 18 | cmul 11132 | . . . . . 6 class · | |
| 19 | 16, 17, 18 | co 7403 | . . . . 5 class ((!‘(𝑛 − 𝑘)) · (!‘𝑘)) |
| 20 | cdiv 11892 | . . . . 5 class / | |
| 21 | 13, 19, 20 | co 7403 | . . . 4 class ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))) |
| 22 | 11, 21, 7 | cif 4500 | . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0) |
| 23 | 2, 3, 4, 5, 22 | cmpo 7405 | . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
| 24 | 1, 23 | wceq 1540 | 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bcval 14320 |
| Copyright terms: Public domain | W3C validator |