MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bc Structured version   Visualization version   GIF version

Definition df-bc 14212
Description: Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 30434).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

Assertion
Ref Expression
df-bc C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-bc
StepHypRef Expression
1 cbc 14211 . 2 class C
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 12388 . . 3 class 0
5 cz 12475 . . 3 class
63cv 1540 . . . . 5 class 𝑘
7 cc0 11013 . . . . . 6 class 0
82cv 1540 . . . . . 6 class 𝑛
9 cfz 13409 . . . . . 6 class ...
107, 8, 9co 7352 . . . . 5 class (0...𝑛)
116, 10wcel 2113 . . . 4 wff 𝑘 ∈ (0...𝑛)
12 cfa 14182 . . . . . 6 class !
138, 12cfv 6486 . . . . 5 class (!‘𝑛)
14 cmin 11351 . . . . . . . 8 class
158, 6, 14co 7352 . . . . . . 7 class (𝑛𝑘)
1615, 12cfv 6486 . . . . . 6 class (!‘(𝑛𝑘))
176, 12cfv 6486 . . . . . 6 class (!‘𝑘)
18 cmul 11018 . . . . . 6 class ·
1916, 17, 18co 7352 . . . . 5 class ((!‘(𝑛𝑘)) · (!‘𝑘))
20 cdiv 11781 . . . . 5 class /
2113, 19, 20co 7352 . . . 4 class ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘)))
2211, 21, 7cif 4474 . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0)
232, 3, 4, 5, 22cmpo 7354 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
241, 23wceq 1541 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Colors of variables: wff setvar class
This definition is referenced by:  bcval  14213
  Copyright terms: Public domain W3C validator