Home | Metamath
Proof Explorer Theorem List (p. 143 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cconcat 14201 | Syntax for the concatenation operator. |
class ++ | ||
Definition | df-concat 14202* | Define the concatenation operator which combines two words. Definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 15-Aug-2015.) |
⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) | ||
Theorem | ccatfn 14203 | The concatenation operator is a two-argument function. (Contributed by Mario Carneiro, 27-Sep-2015.) (Proof shortened by AV, 29-Apr-2020.) |
⊢ ++ Fn (V × V) | ||
Theorem | ccatfval 14204* | Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) | ||
Theorem | ccatcl 14205 | The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.) |
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) | ||
Theorem | ccatlen 14206 | The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.) |
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇))) | ||
Theorem | ccatlenOLD 14207 | Obsolete version of ccatlen 14206 as of 1-Jan-2024. The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇))) | ||
Theorem | ccat0 14208 | The concatenation of two words is empty iff the two words are empty. (Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.) |
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅))) | ||
Theorem | ccatval1 14209 | Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ, 18-Jan-2024.) |
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) | ||
Theorem | ccatval1OLD 14210 | Obsolete version of ccatval1 14209 as of 18-Jan-2024. Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) | ||
Theorem | ccatval2 14211 | Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆)))) | ||
Theorem | ccatval3 14212 | Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.) |
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇‘𝐼)) | ||
Theorem | elfzelfzccat 14213 | An element of a finite set of sequential integers up to the length of a word is an element of an extended finite set of sequential integers up to the length of a concatenation of this word with another word. (Contributed by Alexander van der Vekens, 28-Mar-2018.) |
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘𝐴)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) | ||
Theorem | ccatvalfn 14214 | The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) | ||
Theorem | ccatsymb 14215 | The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.) |
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴‘𝐼), (𝐵‘(𝐼 − (♯‘𝐴))))) | ||
Theorem | ccatfv0 14216 | The first symbol of a concatenation of two words is the first symbol of the first word if the first word is not empty. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0)) | ||
Theorem | ccatval1lsw 14217 | The last symbol of the left (nonempty) half of a concatenated word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Proof shortened by AV, 1-May-2020.) |
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)) = (lastS‘𝐴)) | ||
Theorem | ccatval21sw 14218 | The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022.) |
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) | ||
Theorem | ccatlid 14219 | Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) | ||
Theorem | ccatrid 14220 | Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
⊢ (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) = 𝑆) | ||
Theorem | ccatass 14221 | Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) = (𝑆 ++ (𝑇 ++ 𝑈))) | ||
Theorem | ccatrn 14222 | The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇)) | ||
Theorem | ccatidid 14223 | Concatenation of the empty word by the empty word. (Contributed by AV, 26-Mar-2022.) |
⊢ (∅ ++ ∅) = ∅ | ||
Theorem | lswccatn0lsw 14224 | The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.) |
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵)) | ||
Theorem | lswccat0lsw 14225 | The last symbol of a word concatenated with the empty word is the last symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.) |
⊢ (𝑊 ∈ Word 𝑉 → (lastS‘(𝑊 ++ ∅)) = (lastS‘𝑊)) | ||
Theorem | ccatalpha 14226 | A concatenation of two arbitrary words is a word over an alphabet iff the symbols of both words belong to the alphabet. (Contributed by AV, 28-Feb-2021.) |
⊢ ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆))) | ||
Theorem | ccatrcl1 14227 | Reverse closure of a concatenation: If the concatenation of two arbitrary words is a word over an alphabet then the symbols of the first word belong to the alphabet. (Contributed by AV, 3-Mar-2021.) |
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ (𝑊 = (𝐴 ++ 𝐵) ∧ 𝑊 ∈ Word 𝑆)) → 𝐴 ∈ Word 𝑆) | ||
Syntax | cs1 14228 | Syntax for the singleton word constructor. |
class 〈“𝐴”〉 | ||
Definition | df-s1 14229 | Define the canonical injection from symbols to words. Although not required, 𝐴 should usually be a set. Otherwise, the singleton word 〈“𝐴”〉 would be the singleton word consisting of the empty set, see s1prc 14237, and not, as maybe expected, the empty word, see also s1nz 14240. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | ||
Theorem | ids1 14230 | Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | ||
Theorem | s1val 14231 | Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | ||
Theorem | s1rn 14232 | The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) | ||
Theorem | s1eq 14233 | Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) | ||
Theorem | s1eqd 14234 | Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) | ||
Theorem | s1cl 14235 | A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.) |
⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) | ||
Theorem | s1cld 14236 | A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) | ||
Theorem | s1prc 14237 | Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.) |
⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) | ||
Theorem | s1cli 14238 | A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴”〉 ∈ Word V | ||
Theorem | s1len 14239 | Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (♯‘〈“𝐴”〉) = 1 | ||
Theorem | s1nz 14240 | A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.) |
⊢ 〈“𝐴”〉 ≠ ∅ | ||
Theorem | s1dm 14241 | The domain of a singleton word is a singleton. (Contributed by AV, 9-Jan-2020.) |
⊢ dom 〈“𝐴”〉 = {0} | ||
Theorem | s1dmALT 14242 | Alternate version of s1dm 14241, having a shorter proof, but requiring that 𝐴 is a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑆 → dom 〈“𝐴”〉 = {0}) | ||
Theorem | s1fv 14243 | Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) | ||
Theorem | lsws1 14244 | The last symbol of a singleton word is its symbol. (Contributed by AV, 22-Oct-2018.) |
⊢ (𝐴 ∈ 𝑉 → (lastS‘〈“𝐴”〉) = 𝐴) | ||
Theorem | eqs1 14245 | A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) | ||
Theorem | wrdl1exs1 14246* | A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 1) → ∃𝑠 ∈ 𝑆 𝑊 = 〈“𝑠”〉) | ||
Theorem | wrdl1s1 14247 | A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.) |
⊢ (𝑆 ∈ 𝑉 → (𝑊 = 〈“𝑆”〉 ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) | ||
Theorem | s111 14248 | The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) | ||
Theorem | ccatws1cl 14249 | The concatenation of a word with a singleton word is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑊 ++ 〈“𝑋”〉) ∈ Word 𝑉) | ||
Theorem | ccatws1clv 14250 | The concatenation of a word with a singleton word (which can be over a different alphabet) is a word. (Contributed by AV, 5-Mar-2022.) |
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ++ 〈“𝑋”〉) ∈ Word V) | ||
Theorem | ccat2s1cl 14251 | The concatenation of two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉) | ||
Theorem | ccats1alpha 14252 | A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.) |
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) | ||
Theorem | ccatws1len 14253 | The length of the concatenation of a word with a singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 4-Mar-2022.) |
⊢ (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ 〈“𝑋”〉)) = ((♯‘𝑊) + 1)) | ||
Theorem | ccatws1lenp1b 14254 | The length of a word is 𝑁 iff the length of the concatenation of the word with a singleton word is 𝑁 + 1. (Contributed by AV, 4-Mar-2022.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → ((♯‘(𝑊 ++ 〈“𝑋”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) | ||
Theorem | wrdlenccats1lenm1 14255 | The length of a word is the length of the word concatenated with a singleton word minus 1. (Contributed by AV, 28-Jun-2018.) (Revised by AV, 5-Mar-2022.) |
⊢ (𝑊 ∈ Word 𝑉 → ((♯‘(𝑊 ++ 〈“𝑆”〉)) − 1) = (♯‘𝑊)) | ||
Theorem | ccat2s1len 14256 | The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 14-Jan-2024.) |
⊢ (♯‘(〈“𝑋”〉 ++ 〈“𝑌”〉)) = 2 | ||
Theorem | ccat2s1lenOLD 14257 | Obsolete version of ccat2s1len 14256 as of 14-Jan-2024. The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (♯‘(〈“𝑋”〉 ++ 〈“𝑌”〉)) = 2) | ||
Theorem | ccatw2s1cl 14258 | The concatenation of a word with two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ Word 𝑉) | ||
Theorem | ccatw2s1len 14259 | The length of the concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 5-Mar-2022.) |
⊢ (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)) = ((♯‘𝑊) + 2)) | ||
Theorem | ccats1val1 14260 | Value of a symbol in the left half of a word concatenated with a single symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by JJ, 20-Jan-2024.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (𝑊‘𝐼)) | ||
Theorem | ccats1val1OLD 14261 | Obsolete version of ccats1val1 14260 as of 20-Jan-2024. Value of a symbol in the left half of a word concatenated with a single symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (𝑊‘𝐼)) | ||
Theorem | ccats1val2 14262 | Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) | ||
Theorem | ccat1st1st 14263 | The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.) |
⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) | ||
Theorem | ccat2s1p1 14264 | Extract the first of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.) |
⊢ (𝑋 ∈ 𝑉 → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘0) = 𝑋) | ||
Theorem | ccat2s1p2 14265 | Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.) |
⊢ (𝑌 ∈ 𝑉 → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) | ||
Theorem | ccat2s1p1OLD 14266 | Obsolete version of ccat2s1p1 14264 as of 20-Jan-2024. Extract the first of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘0) = 𝑋) | ||
Theorem | ccat2s1p2OLD 14267 | Obsolete version of ccat2s1p2 14265 as of 20-Jan-2024. Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) | ||
Theorem | ccatw2s1ass 14268 | Associative law for a concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) | ||
Theorem | ccatw2s1assOLD 14269 | Obsolete version of ccatw2s1ass 14268 as of 29-Jan-2024. Associative law for a concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) | ||
Theorem | ccatws1n0 14270 | The concatenation of a word with a singleton word is not the empty set. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 5-Mar-2022.) |
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ++ 〈“𝑋”〉) ≠ ∅) | ||
Theorem | ccatws1ls 14271 | The last symbol of the concatenation of a word with a singleton word is the symbol of the singleton word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉)‘(♯‘𝑊)) = 𝑋) | ||
Theorem | lswccats1 14272 | The last symbol of a word concatenated with a singleton word is the symbol of the singleton word. (Contributed by AV, 6-Aug-2018.) (Proof shortened by AV, 22-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (lastS‘(𝑊 ++ 〈“𝑆”〉)) = 𝑆) | ||
Theorem | lswccats1fst 14273 | The last symbol of a nonempty word concatenated with its first symbol is the first symbol. (Contributed by AV, 28-Jun-2018.) (Proof shortened by AV, 1-May-2020.) |
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) | ||
Theorem | ccatw2s1p1 14274 | Extract the symbol of the first singleton word of a word concatenated with this singleton word and another singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.) (Revised by AV, 1-May-2020.) (Revised by AV, 29-Jan-2024.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ 𝑋 ∈ 𝑉) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝑁) = 𝑋) | ||
Theorem | ccatw2s1p1OLD 14275 | Obsolete version of ccatw2s1p1 14274 as of 29-Jan-2024. Extract the symbol of the first singleton word of a word concatenated with this singleton word and another singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝑁) = 𝑋) | ||
Theorem | ccatw2s1p2 14276 | Extract the second of two single symbols concatenated with a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.) |
⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 + 1)) = 𝑌) | ||
Theorem | ccat2s1fvw 14277 | Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 13-Jan-2020.) (Proof shortened by AV, 1-May-2020.) (Revised by AV, 28-Jan-2024.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) | ||
Theorem | ccat2s1fvwOLD 14278 | Obsolete version of ccat2s1fvw 14277 as of 28-Jan-2024. Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 13-Jan-2020.) (Proof shortened by AV, 1-May-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) | ||
Theorem | ccat2s1fst 14279 | The first symbol of the concatenation of a word with two single symbols. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 28-Jan-2024.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) | ||
Theorem | ccat2s1fstOLD 14280 | Obsolete version of ccat2s1fst 14279 as of 28-Jan-2024. The first symbol of the concatenation of a word with two single symbols. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) | ||
Syntax | csubstr 14281 | Syntax for the subword operator. |
class substr | ||
Definition | df-substr 14282* | Define an operation which extracts portions (called subwords or substrings) of words. Definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | ||
Theorem | swrdnznd 14283 | The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6786). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.) |
⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) | ||
Theorem | swrdval 14284* | Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅)) | ||
Theorem | swrd00 14285 | A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ | ||
Theorem | swrdcl 14286 | Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝑆 ∈ Word 𝐴 → (𝑆 substr 〈𝐹, 𝐿〉) ∈ Word 𝐴) | ||
Theorem | swrdval2 14287* | Value of the subword extractor in its intended domain. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 2-May-2020.) |
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))) | ||
Theorem | swrdlen 14288 | Length of an extracted subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr 〈𝐹, 𝐿〉)) = (𝐿 − 𝐹)) | ||
Theorem | swrdfv 14289 | A symbol in an extracted subword, indexed using the subword's indices. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^(𝐿 − 𝐹))) → ((𝑆 substr 〈𝐹, 𝐿〉)‘𝑋) = (𝑆‘(𝑋 + 𝐹))) | ||
Theorem | swrdfv0 14290 | The first symbol in an extracted subword. (Contributed by AV, 27-Apr-2022.) |
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr 〈𝐹, 𝐿〉)‘0) = (𝑆‘𝐹)) | ||
Theorem | swrdf 14291 | A subword of a word is a function from a half-open range of nonnegative integers of the same length as the subword to the set of symbols for the original word. (Contributed by AV, 13-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈𝑀, 𝑁〉):(0..^(𝑁 − 𝑀))⟶𝑉) | ||
Theorem | swrdvalfn 14292 | Value of the subword extractor as function with domain. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) Fn (0..^(𝐿 − 𝐹))) | ||
Theorem | swrdrn 14293 | The range of a subword of a word is a subset of the set of symbols for the word. (Contributed by AV, 13-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) ⊆ 𝑉) | ||
Theorem | swrdlend 14294 | The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) | ||
Theorem | swrdnd 14295 | The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) | ||
Theorem | swrdnd2 14296 | Value of the subword extractor outside its intended domain. (Contributed by Alexander van der Vekens, 24-May-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∨ (♯‘𝑊) ≤ 𝐴 ∨ 𝐵 ≤ 0) → (𝑊 substr 〈𝐴, 𝐵〉) = ∅)) | ||
Theorem | swrdnnn0nd 14297 | The value of a subword operation for arguments not being nonnegative integers is the empty set. (Contributed by AV, 2-Dec-2022.) |
⊢ ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0)) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) | ||
Theorem | swrdnd0 14298 | The value of a subword operation for inproper arguments is the empty set. (Contributed by AV, 2-Dec-2022.) |
⊢ (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) | ||
Theorem | swrd0 14299 | A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.) |
⊢ (∅ substr 〈𝐹, 𝐿〉) = ∅ | ||
Theorem | swrdrlen 14300 | Length of a right-anchored subword. (Contributed by Alexander van der Vekens, 5-Apr-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr 〈𝐼, (♯‘𝑊)〉)) = ((♯‘𝑊) − 𝐼)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |