Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcval | Structured version Visualization version GIF version |
Description: Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾 ≤ 𝑁 does not hold. See bcval2 13947 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
bcval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7263 | . . . 4 ⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | |
2 | 1 | eleq2d 2824 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑘 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑁))) |
3 | fveq2 6756 | . . . 4 ⊢ (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁)) | |
4 | fvoveq1 7278 | . . . . 5 ⊢ (𝑛 = 𝑁 → (!‘(𝑛 − 𝑘)) = (!‘(𝑁 − 𝑘))) | |
5 | 4 | oveq1d 7270 | . . . 4 ⊢ (𝑛 = 𝑁 → ((!‘(𝑛 − 𝑘)) · (!‘𝑘)) = ((!‘(𝑁 − 𝑘)) · (!‘𝑘))) |
6 | 3, 5 | oveq12d 7273 | . . 3 ⊢ (𝑛 = 𝑁 → ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘)))) |
7 | 2, 6 | ifbieq1d 4480 | . 2 ⊢ (𝑛 = 𝑁 → if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0) = if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))), 0)) |
8 | eleq1 2826 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑘 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁))) | |
9 | oveq2 7263 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑁 − 𝑘) = (𝑁 − 𝐾)) | |
10 | 9 | fveq2d 6760 | . . . . 5 ⊢ (𝑘 = 𝐾 → (!‘(𝑁 − 𝑘)) = (!‘(𝑁 − 𝐾))) |
11 | fveq2 6756 | . . . . 5 ⊢ (𝑘 = 𝐾 → (!‘𝑘) = (!‘𝐾)) | |
12 | 10, 11 | oveq12d 7273 | . . . 4 ⊢ (𝑘 = 𝐾 → ((!‘(𝑁 − 𝑘)) · (!‘𝑘)) = ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) |
13 | 12 | oveq2d 7271 | . . 3 ⊢ (𝑘 = 𝐾 → ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
14 | 8, 13 | ifbieq1d 4480 | . 2 ⊢ (𝑘 = 𝐾 → if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))), 0) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) |
15 | df-bc 13945 | . 2 ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) | |
16 | ovex 7288 | . . 3 ⊢ ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) ∈ V | |
17 | c0ex 10900 | . . 3 ⊢ 0 ∈ V | |
18 | 16, 17 | ifex 4506 | . 2 ⊢ if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0) ∈ V |
19 | 7, 14, 15, 18 | ovmpo 7411 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 ‘cfv 6418 (class class class)co 7255 0cc0 10802 · cmul 10807 − cmin 11135 / cdiv 11562 ℕ0cn0 12163 ℤcz 12249 ...cfz 13168 !cfa 13915 Ccbc 13944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-bc 13945 |
This theorem is referenced by: bcval2 13947 bcval3 13948 bcneg1 33608 bccolsum 33611 fwddifnp1 34394 |
Copyright terms: Public domain | W3C validator |