MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval Structured version   Visualization version   GIF version

Theorem bcval 13946
Description: Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾𝑁 does not hold. See bcval2 13947 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))

Proof of Theorem bcval
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
21eleq2d 2824 . . 3 (𝑛 = 𝑁 → (𝑘 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑁)))
3 fveq2 6756 . . . 4 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
4 fvoveq1 7278 . . . . 5 (𝑛 = 𝑁 → (!‘(𝑛𝑘)) = (!‘(𝑁𝑘)))
54oveq1d 7270 . . . 4 (𝑛 = 𝑁 → ((!‘(𝑛𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝑘)) · (!‘𝑘)))
63, 5oveq12d 7273 . . 3 (𝑛 = 𝑁 → ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))))
72, 6ifbieq1d 4480 . 2 (𝑛 = 𝑁 → if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0) = if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0))
8 eleq1 2826 . . 3 (𝑘 = 𝐾 → (𝑘 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
9 oveq2 7263 . . . . . 6 (𝑘 = 𝐾 → (𝑁𝑘) = (𝑁𝐾))
109fveq2d 6760 . . . . 5 (𝑘 = 𝐾 → (!‘(𝑁𝑘)) = (!‘(𝑁𝐾)))
11 fveq2 6756 . . . . 5 (𝑘 = 𝐾 → (!‘𝑘) = (!‘𝐾))
1210, 11oveq12d 7273 . . . 4 (𝑘 = 𝐾 → ((!‘(𝑁𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝐾)) · (!‘𝐾)))
1312oveq2d 7271 . . 3 (𝑘 = 𝐾 → ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
148, 13ifbieq1d 4480 . 2 (𝑘 = 𝐾 → if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
15 df-bc 13945 . 2 C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
16 ovex 7288 . . 3 ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) ∈ V
17 c0ex 10900 . . 3 0 ∈ V
1816, 17ifex 4506 . 2 if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ V
197, 14, 15, 18ovmpo 7411 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ifcif 4456  cfv 6418  (class class class)co 7255  0cc0 10802   · cmul 10807  cmin 11135   / cdiv 11562  0cn0 12163  cz 12249  ...cfz 13168  !cfa 13915  Ccbc 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-bc 13945
This theorem is referenced by:  bcval2  13947  bcval3  13948  bcneg1  33608  bccolsum  33611  fwddifnp1  34394
  Copyright terms: Public domain W3C validator