| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcval | Structured version Visualization version GIF version | ||
| Description: Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾 ≤ 𝑁 does not hold. See bcval2 14230 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| bcval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7361 | . . . 4 ⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | |
| 2 | 1 | eleq2d 2814 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑘 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑁))) |
| 3 | fveq2 6826 | . . . 4 ⊢ (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁)) | |
| 4 | fvoveq1 7376 | . . . . 5 ⊢ (𝑛 = 𝑁 → (!‘(𝑛 − 𝑘)) = (!‘(𝑁 − 𝑘))) | |
| 5 | 4 | oveq1d 7368 | . . . 4 ⊢ (𝑛 = 𝑁 → ((!‘(𝑛 − 𝑘)) · (!‘𝑘)) = ((!‘(𝑁 − 𝑘)) · (!‘𝑘))) |
| 6 | 3, 5 | oveq12d 7371 | . . 3 ⊢ (𝑛 = 𝑁 → ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘)))) |
| 7 | 2, 6 | ifbieq1d 4503 | . 2 ⊢ (𝑛 = 𝑁 → if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0) = if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))), 0)) |
| 8 | eleq1 2816 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑘 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁))) | |
| 9 | oveq2 7361 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑁 − 𝑘) = (𝑁 − 𝐾)) | |
| 10 | 9 | fveq2d 6830 | . . . . 5 ⊢ (𝑘 = 𝐾 → (!‘(𝑁 − 𝑘)) = (!‘(𝑁 − 𝐾))) |
| 11 | fveq2 6826 | . . . . 5 ⊢ (𝑘 = 𝐾 → (!‘𝑘) = (!‘𝐾)) | |
| 12 | 10, 11 | oveq12d 7371 | . . . 4 ⊢ (𝑘 = 𝐾 → ((!‘(𝑁 − 𝑘)) · (!‘𝑘)) = ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) |
| 13 | 12 | oveq2d 7369 | . . 3 ⊢ (𝑘 = 𝐾 → ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
| 14 | 8, 13 | ifbieq1d 4503 | . 2 ⊢ (𝑘 = 𝐾 → if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))), 0) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) |
| 15 | df-bc 14228 | . 2 ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) | |
| 16 | ovex 7386 | . . 3 ⊢ ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) ∈ V | |
| 17 | c0ex 11128 | . . 3 ⊢ 0 ∈ V | |
| 18 | 16, 17 | ifex 4529 | . 2 ⊢ if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0) ∈ V |
| 19 | 7, 14, 15, 18 | ovmpo 7513 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4478 ‘cfv 6486 (class class class)co 7353 0cc0 11028 · cmul 11033 − cmin 11365 / cdiv 11795 ℕ0cn0 12402 ℤcz 12489 ...cfz 13428 !cfa 14198 Ccbc 14227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-bc 14228 |
| This theorem is referenced by: bcval2 14230 bcval3 14231 bcneg1 35708 bccolsum 35711 fwddifnp1 36138 |
| Copyright terms: Public domain | W3C validator |