MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval Structured version   Visualization version   GIF version

Theorem bcval 14229
Description: Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾𝑁 does not hold. See bcval2 14230 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))

Proof of Theorem bcval
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
21eleq2d 2814 . . 3 (𝑛 = 𝑁 → (𝑘 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑁)))
3 fveq2 6826 . . . 4 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
4 fvoveq1 7376 . . . . 5 (𝑛 = 𝑁 → (!‘(𝑛𝑘)) = (!‘(𝑁𝑘)))
54oveq1d 7368 . . . 4 (𝑛 = 𝑁 → ((!‘(𝑛𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝑘)) · (!‘𝑘)))
63, 5oveq12d 7371 . . 3 (𝑛 = 𝑁 → ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))))
72, 6ifbieq1d 4503 . 2 (𝑛 = 𝑁 → if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0) = if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0))
8 eleq1 2816 . . 3 (𝑘 = 𝐾 → (𝑘 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
9 oveq2 7361 . . . . . 6 (𝑘 = 𝐾 → (𝑁𝑘) = (𝑁𝐾))
109fveq2d 6830 . . . . 5 (𝑘 = 𝐾 → (!‘(𝑁𝑘)) = (!‘(𝑁𝐾)))
11 fveq2 6826 . . . . 5 (𝑘 = 𝐾 → (!‘𝑘) = (!‘𝐾))
1210, 11oveq12d 7371 . . . 4 (𝑘 = 𝐾 → ((!‘(𝑁𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝐾)) · (!‘𝐾)))
1312oveq2d 7369 . . 3 (𝑘 = 𝐾 → ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
148, 13ifbieq1d 4503 . 2 (𝑘 = 𝐾 → if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
15 df-bc 14228 . 2 C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
16 ovex 7386 . . 3 ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) ∈ V
17 c0ex 11128 . . 3 0 ∈ V
1816, 17ifex 4529 . 2 if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ V
197, 14, 15, 18ovmpo 7513 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4478  cfv 6486  (class class class)co 7353  0cc0 11028   · cmul 11033  cmin 11365   / cdiv 11795  0cn0 12402  cz 12489  ...cfz 13428  !cfa 14198  Ccbc 14227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-mulcl 11090  ax-i2m1 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-bc 14228
This theorem is referenced by:  bcval2  14230  bcval3  14231  bcneg1  35708  bccolsum  35711  fwddifnp1  36138
  Copyright terms: Public domain W3C validator