| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcval | Structured version Visualization version GIF version | ||
| Description: Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾 ≤ 𝑁 does not hold. See bcval2 14214 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| bcval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7360 | . . . 4 ⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | |
| 2 | 1 | eleq2d 2819 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑘 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑁))) |
| 3 | fveq2 6828 | . . . 4 ⊢ (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁)) | |
| 4 | fvoveq1 7375 | . . . . 5 ⊢ (𝑛 = 𝑁 → (!‘(𝑛 − 𝑘)) = (!‘(𝑁 − 𝑘))) | |
| 5 | 4 | oveq1d 7367 | . . . 4 ⊢ (𝑛 = 𝑁 → ((!‘(𝑛 − 𝑘)) · (!‘𝑘)) = ((!‘(𝑁 − 𝑘)) · (!‘𝑘))) |
| 6 | 3, 5 | oveq12d 7370 | . . 3 ⊢ (𝑛 = 𝑁 → ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘)))) |
| 7 | 2, 6 | ifbieq1d 4499 | . 2 ⊢ (𝑛 = 𝑁 → if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0) = if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))), 0)) |
| 8 | eleq1 2821 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑘 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁))) | |
| 9 | oveq2 7360 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑁 − 𝑘) = (𝑁 − 𝐾)) | |
| 10 | 9 | fveq2d 6832 | . . . . 5 ⊢ (𝑘 = 𝐾 → (!‘(𝑁 − 𝑘)) = (!‘(𝑁 − 𝐾))) |
| 11 | fveq2 6828 | . . . . 5 ⊢ (𝑘 = 𝐾 → (!‘𝑘) = (!‘𝐾)) | |
| 12 | 10, 11 | oveq12d 7370 | . . . 4 ⊢ (𝑘 = 𝐾 → ((!‘(𝑁 − 𝑘)) · (!‘𝑘)) = ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) |
| 13 | 12 | oveq2d 7368 | . . 3 ⊢ (𝑘 = 𝐾 → ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
| 14 | 8, 13 | ifbieq1d 4499 | . 2 ⊢ (𝑘 = 𝐾 → if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))), 0) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) |
| 15 | df-bc 14212 | . 2 ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) | |
| 16 | ovex 7385 | . . 3 ⊢ ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) ∈ V | |
| 17 | c0ex 11113 | . . 3 ⊢ 0 ∈ V | |
| 18 | 16, 17 | ifex 4525 | . 2 ⊢ if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0) ∈ V |
| 19 | 7, 14, 15, 18 | ovmpo 7512 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ifcif 4474 ‘cfv 6486 (class class class)co 7352 0cc0 11013 · cmul 11018 − cmin 11351 / cdiv 11781 ℕ0cn0 12388 ℤcz 12475 ...cfz 13409 !cfa 14182 Ccbc 14211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-i2m1 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-bc 14212 |
| This theorem is referenced by: bcval2 14214 bcval3 14215 bcneg1 35801 bccolsum 35804 fwddifnp1 36230 |
| Copyright terms: Public domain | W3C validator |