![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-bc | Structured version Visualization version GIF version |
Description: Example for df-bc 13340. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-bc | ⊢ (5C3) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11376 | . . 3 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 6887 | . 2 ⊢ (5C3) = ((4 + 1)C3) |
3 | 4bc3eq4 13365 | . . . 4 ⊢ (4C3) = 4 | |
4 | 3m1e2 11445 | . . . . . 6 ⊢ (3 − 1) = 2 | |
5 | 4 | oveq2i 6888 | . . . . 5 ⊢ (4C(3 − 1)) = (4C2) |
6 | 4bc2eq6 13366 | . . . . 5 ⊢ (4C2) = 6 | |
7 | 5, 6 | eqtri 2820 | . . . 4 ⊢ (4C(3 − 1)) = 6 |
8 | 3, 7 | oveq12i 6889 | . . 3 ⊢ ((4C3) + (4C(3 − 1))) = (4 + 6) |
9 | 4nn0 11598 | . . . 4 ⊢ 4 ∈ ℕ0 | |
10 | 3z 11697 | . . . 4 ⊢ 3 ∈ ℤ | |
11 | bcpasc 13358 | . . . 4 ⊢ ((4 ∈ ℕ0 ∧ 3 ∈ ℤ) → ((4C3) + (4C(3 − 1))) = ((4 + 1)C3)) | |
12 | 9, 10, 11 | mp2an 684 | . . 3 ⊢ ((4C3) + (4C(3 − 1))) = ((4 + 1)C3) |
13 | 6cn 11404 | . . . 4 ⊢ 6 ∈ ℂ | |
14 | 4cn 11396 | . . . 4 ⊢ 4 ∈ ℂ | |
15 | 6p4e10 11854 | . . . 4 ⊢ (6 + 4) = ;10 | |
16 | 13, 14, 15 | addcomli 10517 | . . 3 ⊢ (4 + 6) = ;10 |
17 | 8, 12, 16 | 3eqtr3i 2828 | . 2 ⊢ ((4 + 1)C3) = ;10 |
18 | 2, 17 | eqtri 2820 | 1 ⊢ (5C3) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 (class class class)co 6877 0cc0 10223 1c1 10224 + caddc 10226 − cmin 10555 2c2 11365 3c3 11366 4c4 11367 5c5 11368 6c6 11369 ℕ0cn0 11577 ℤcz 11663 ;cdc 11780 Ccbc 13339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-div 10976 df-nn 11312 df-2 11373 df-3 11374 df-4 11375 df-5 11376 df-6 11377 df-7 11378 df-8 11379 df-9 11380 df-n0 11578 df-z 11664 df-dec 11781 df-uz 11928 df-rp 12072 df-fz 12578 df-seq 13053 df-fac 13311 df-bc 13340 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |