Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-bc | Structured version Visualization version GIF version |
Description: Example for df-bc 13757. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-bc | ⊢ (5C3) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11784 | . . 3 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 7182 | . 2 ⊢ (5C3) = ((4 + 1)C3) |
3 | 4bc3eq4 13782 | . . . 4 ⊢ (4C3) = 4 | |
4 | 3m1e2 11846 | . . . . . 6 ⊢ (3 − 1) = 2 | |
5 | 4 | oveq2i 7183 | . . . . 5 ⊢ (4C(3 − 1)) = (4C2) |
6 | 4bc2eq6 13783 | . . . . 5 ⊢ (4C2) = 6 | |
7 | 5, 6 | eqtri 2761 | . . . 4 ⊢ (4C(3 − 1)) = 6 |
8 | 3, 7 | oveq12i 7184 | . . 3 ⊢ ((4C3) + (4C(3 − 1))) = (4 + 6) |
9 | 4nn0 11997 | . . . 4 ⊢ 4 ∈ ℕ0 | |
10 | 3z 12098 | . . . 4 ⊢ 3 ∈ ℤ | |
11 | bcpasc 13775 | . . . 4 ⊢ ((4 ∈ ℕ0 ∧ 3 ∈ ℤ) → ((4C3) + (4C(3 − 1))) = ((4 + 1)C3)) | |
12 | 9, 10, 11 | mp2an 692 | . . 3 ⊢ ((4C3) + (4C(3 − 1))) = ((4 + 1)C3) |
13 | 6cn 11809 | . . . 4 ⊢ 6 ∈ ℂ | |
14 | 4cn 11803 | . . . 4 ⊢ 4 ∈ ℂ | |
15 | 6p4e10 12253 | . . . 4 ⊢ (6 + 4) = ;10 | |
16 | 13, 14, 15 | addcomli 10912 | . . 3 ⊢ (4 + 6) = ;10 |
17 | 8, 12, 16 | 3eqtr3i 2769 | . 2 ⊢ ((4 + 1)C3) = ;10 |
18 | 2, 17 | eqtri 2761 | 1 ⊢ (5C3) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 (class class class)co 7172 0cc0 10617 1c1 10618 + caddc 10620 − cmin 10950 2c2 11773 3c3 11774 4c4 11775 5c5 11776 6c6 11777 ℕ0cn0 11978 ℤcz 12064 ;cdc 12181 Ccbc 13756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-div 11378 df-nn 11719 df-2 11781 df-3 11782 df-4 11783 df-5 11784 df-6 11785 df-7 11786 df-8 11787 df-9 11788 df-n0 11979 df-z 12065 df-dec 12182 df-uz 12327 df-rp 12475 df-fz 12984 df-seq 13463 df-fac 13728 df-bc 13757 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |