Detailed syntax breakdown of Definition df-bits
| Step | Hyp | Ref
| Expression |
| 1 | | cbits 16443 |
. 2
class
bits |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | cz 12593 |
. . 3
class
ℤ |
| 4 | | c2 12300 |
. . . . . 6
class
2 |
| 5 | 2 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 6 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
| 7 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑚 |
| 8 | | cexp 14084 |
. . . . . . . . 9
class
↑ |
| 9 | 4, 7, 8 | co 7410 |
. . . . . . . 8
class
(2↑𝑚) |
| 10 | | cdiv 11899 |
. . . . . . . 8
class
/ |
| 11 | 5, 9, 10 | co 7410 |
. . . . . . 7
class (𝑛 / (2↑𝑚)) |
| 12 | | cfl 13812 |
. . . . . . 7
class
⌊ |
| 13 | 11, 12 | cfv 6536 |
. . . . . 6
class
(⌊‘(𝑛 /
(2↑𝑚))) |
| 14 | | cdvds 16277 |
. . . . . 6
class
∥ |
| 15 | 4, 13, 14 | wbr 5124 |
. . . . 5
wff 2 ∥
(⌊‘(𝑛 /
(2↑𝑚))) |
| 16 | 15 | wn 3 |
. . . 4
wff ¬ 2
∥ (⌊‘(𝑛 /
(2↑𝑚))) |
| 17 | | cn0 12506 |
. . . 4
class
ℕ0 |
| 18 | 16, 6, 17 | crab 3420 |
. . 3
class {𝑚 ∈ ℕ0
∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))} |
| 19 | 2, 3, 18 | cmpt 5206 |
. 2
class (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0
∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) |
| 20 | 1, 19 | wceq 1540 |
1
wff bits =
(𝑛 ∈ ℤ ↦
{𝑚 ∈
ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) |