| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitsfval | Structured version Visualization version GIF version | ||
| Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsfval | ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7375 | . . . . 5 ⊢ (𝑛 = 𝑁 → (⌊‘(𝑛 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑚)))) | |
| 2 | 1 | breq2d 5105 | . . . 4 ⊢ (𝑛 = 𝑁 → (2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) |
| 3 | 2 | notbid 318 | . . 3 ⊢ (𝑛 = 𝑁 → (¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) |
| 4 | 3 | rabbidv 3402 | . 2 ⊢ (𝑛 = 𝑁 → {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))} = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) |
| 5 | df-bits 16339 | . 2 ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) | |
| 6 | nn0ex 12393 | . . 3 ⊢ ℕ0 ∈ V | |
| 7 | 6 | rabex 5279 | . 2 ⊢ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ∈ V |
| 8 | 4, 5, 7 | fvmpt 6935 | 1 ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 / cdiv 11780 2c2 12186 ℕ0cn0 12387 ℤcz 12474 ⌊cfl 13700 ↑cexp 13974 ∥ cdvds 16169 bitscbits 16336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-1cn 11070 ax-addcl 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12132 df-n0 12388 df-bits 16339 |
| This theorem is referenced by: bitsval 16341 |
| Copyright terms: Public domain | W3C validator |