MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsval Structured version   Visualization version   GIF version

Theorem bitsval 15763
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsval (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))

Proof of Theorem bitsval
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bits 15761 . . . 4 bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))})
21mptrcl 6754 . . 3 (𝑀 ∈ (bits‘𝑁) → 𝑁 ∈ ℤ)
3 bitsfval 15762 . . . . 5 (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
43eleq2d 2875 . . . 4 (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ 𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}))
5 oveq2 7143 . . . . . . . . 9 (𝑚 = 𝑀 → (2↑𝑚) = (2↑𝑀))
65oveq2d 7151 . . . . . . . 8 (𝑚 = 𝑀 → (𝑁 / (2↑𝑚)) = (𝑁 / (2↑𝑀)))
76fveq2d 6649 . . . . . . 7 (𝑚 = 𝑀 → (⌊‘(𝑁 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑀))))
87breq2d 5042 . . . . . 6 (𝑚 = 𝑀 → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
98notbid 321 . . . . 5 (𝑚 = 𝑀 → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
109elrab 3628 . . . 4 (𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
114, 10syl6bb 290 . . 3 (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))))
122, 11biadanii 821 . 2 (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))))
13 3anass 1092 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))))
1412, 13bitr4i 281 1 (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110   class class class wbr 5030  cfv 6324  (class class class)co 7135   / cdiv 11286  2c2 11680  0cn0 11885  cz 11969  cfl 13155  cexp 13425  cdvds 15599  bitscbits 15758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-1cn 10584  ax-addcl 10586
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-nn 11626  df-n0 11886  df-bits 15761
This theorem is referenced by:  bitsval2  15764  bitsss  15765  bitsfzo  15774  bitsmod  15775  bitscmp  15777
  Copyright terms: Public domain W3C validator