![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitsval | Structured version Visualization version GIF version |
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsval | β’ (π β (bitsβπ) β (π β β€ β§ π β β0 β§ Β¬ 2 β₯ (ββ(π / (2βπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bits 16367 | . . . 4 β’ bits = (π β β€ β¦ {π β β0 β£ Β¬ 2 β₯ (ββ(π / (2βπ)))}) | |
2 | 1 | mptrcl 7000 | . . 3 β’ (π β (bitsβπ) β π β β€) |
3 | bitsfval 16368 | . . . . 5 β’ (π β β€ β (bitsβπ) = {π β β0 β£ Β¬ 2 β₯ (ββ(π / (2βπ)))}) | |
4 | 3 | eleq2d 2813 | . . . 4 β’ (π β β€ β (π β (bitsβπ) β π β {π β β0 β£ Β¬ 2 β₯ (ββ(π / (2βπ)))})) |
5 | oveq2 7412 | . . . . . . . . 9 β’ (π = π β (2βπ) = (2βπ)) | |
6 | 5 | oveq2d 7420 | . . . . . . . 8 β’ (π = π β (π / (2βπ)) = (π / (2βπ))) |
7 | 6 | fveq2d 6888 | . . . . . . 7 β’ (π = π β (ββ(π / (2βπ))) = (ββ(π / (2βπ)))) |
8 | 7 | breq2d 5153 | . . . . . 6 β’ (π = π β (2 β₯ (ββ(π / (2βπ))) β 2 β₯ (ββ(π / (2βπ))))) |
9 | 8 | notbid 318 | . . . . 5 β’ (π = π β (Β¬ 2 β₯ (ββ(π / (2βπ))) β Β¬ 2 β₯ (ββ(π / (2βπ))))) |
10 | 9 | elrab 3678 | . . . 4 β’ (π β {π β β0 β£ Β¬ 2 β₯ (ββ(π / (2βπ)))} β (π β β0 β§ Β¬ 2 β₯ (ββ(π / (2βπ))))) |
11 | 4, 10 | bitrdi 287 | . . 3 β’ (π β β€ β (π β (bitsβπ) β (π β β0 β§ Β¬ 2 β₯ (ββ(π / (2βπ)))))) |
12 | 2, 11 | biadanii 819 | . 2 β’ (π β (bitsβπ) β (π β β€ β§ (π β β0 β§ Β¬ 2 β₯ (ββ(π / (2βπ)))))) |
13 | 3anass 1092 | . 2 β’ ((π β β€ β§ π β β0 β§ Β¬ 2 β₯ (ββ(π / (2βπ)))) β (π β β€ β§ (π β β0 β§ Β¬ 2 β₯ (ββ(π / (2βπ)))))) | |
14 | 12, 13 | bitr4i 278 | 1 β’ (π β (bitsβπ) β (π β β€ β§ π β β0 β§ Β¬ 2 β₯ (ββ(π / (2βπ))))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 {crab 3426 class class class wbr 5141 βcfv 6536 (class class class)co 7404 / cdiv 11872 2c2 12268 β0cn0 12473 β€cz 12559 βcfl 13758 βcexp 14029 β₯ cdvds 16201 bitscbits 16364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-nn 12214 df-n0 12474 df-bits 16367 |
This theorem is referenced by: bitsval2 16370 bitsss 16371 bitsfzo 16380 bitsmod 16381 bitscmp 16383 |
Copyright terms: Public domain | W3C validator |