MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsval Structured version   Visualization version   GIF version

Theorem bitsval 15354
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsval (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))

Proof of Theorem bitsval
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bits 15352 . . . . 5 bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))})
21dmmptss 5775 . . . 4 dom bits ⊆ ℤ
3 elfvdm 6361 . . . 4 (𝑀 ∈ (bits‘𝑁) → 𝑁 ∈ dom bits)
42, 3sseldi 3750 . . 3 (𝑀 ∈ (bits‘𝑁) → 𝑁 ∈ ℤ)
5 bitsfval 15353 . . . . 5 (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
65eleq2d 2836 . . . 4 (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ 𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}))
7 oveq2 6801 . . . . . . . . 9 (𝑚 = 𝑀 → (2↑𝑚) = (2↑𝑀))
87oveq2d 6809 . . . . . . . 8 (𝑚 = 𝑀 → (𝑁 / (2↑𝑚)) = (𝑁 / (2↑𝑀)))
98fveq2d 6336 . . . . . . 7 (𝑚 = 𝑀 → (⌊‘(𝑁 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑀))))
109breq2d 4798 . . . . . 6 (𝑚 = 𝑀 → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
1110notbid 307 . . . . 5 (𝑚 = 𝑀 → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
1211elrab 3515 . . . 4 (𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
136, 12syl6bb 276 . . 3 (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))))
144, 13biadan2 802 . 2 (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))))
15 3anass 1080 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))))
1614, 15bitr4i 267 1 (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {crab 3065   class class class wbr 4786  dom cdm 5249  cfv 6031  (class class class)co 6793   / cdiv 10886  2c2 11272  0cn0 11494  cz 11579  cfl 12799  cexp 13067  cdvds 15189  bitscbits 15349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-i2m1 10206  ax-1ne0 10207  ax-rrecex 10210  ax-cnre 10211
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-nn 11223  df-n0 11495  df-bits 15352
This theorem is referenced by:  bitsval2  15355  bitsss  15356  bitsfzo  15365  bitsmod  15366  bitscmp  15368
  Copyright terms: Public domain W3C validator