MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsval Structured version   Visualization version   GIF version

Theorem bitsval 15762
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsval (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))

Proof of Theorem bitsval
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bits 15760 . . . 4 bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))})
21mptrcl 6759 . . 3 (𝑀 ∈ (bits‘𝑁) → 𝑁 ∈ ℤ)
3 bitsfval 15761 . . . . 5 (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
43eleq2d 2899 . . . 4 (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ 𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}))
5 oveq2 7148 . . . . . . . . 9 (𝑚 = 𝑀 → (2↑𝑚) = (2↑𝑀))
65oveq2d 7156 . . . . . . . 8 (𝑚 = 𝑀 → (𝑁 / (2↑𝑚)) = (𝑁 / (2↑𝑀)))
76fveq2d 6656 . . . . . . 7 (𝑚 = 𝑀 → (⌊‘(𝑁 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑀))))
87breq2d 5054 . . . . . 6 (𝑚 = 𝑀 → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
98notbid 321 . . . . 5 (𝑚 = 𝑀 → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
109elrab 3655 . . . 4 (𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
114, 10syl6bb 290 . . 3 (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))))
122, 11biadanii 821 . 2 (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))))
13 3anass 1092 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))))
1412, 13bitr4i 281 1 (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  {crab 3134   class class class wbr 5042  cfv 6334  (class class class)co 7140   / cdiv 11286  2c2 11680  0cn0 11885  cz 11969  cfl 13155  cexp 13425  cdvds 15598  bitscbits 15757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-1cn 10584  ax-addcl 10586
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-nn 11626  df-n0 11886  df-bits 15760
This theorem is referenced by:  bitsval2  15763  bitsss  15764  bitsfzo  15773  bitsmod  15774  bitscmp  15776
  Copyright terms: Public domain W3C validator