![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitsf | Structured version Visualization version GIF version |
Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsf | β’ bits:β€βΆπ« β0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bits 16366 | . 2 β’ bits = (π β β€ β¦ {π β β0 β£ Β¬ 2 β₯ (ββ(π / (2βπ)))}) | |
2 | nn0ex 12477 | . . . 4 β’ β0 β V | |
3 | ssrab2 4070 | . . . 4 β’ {π β β0 β£ Β¬ 2 β₯ (ββ(π / (2βπ)))} β β0 | |
4 | 2, 3 | elpwi2 5337 | . . 3 β’ {π β β0 β£ Β¬ 2 β₯ (ββ(π / (2βπ)))} β π« β0 |
5 | 4 | a1i 11 | . 2 β’ (π β β€ β {π β β0 β£ Β¬ 2 β₯ (ββ(π / (2βπ)))} β π« β0) |
6 | 1, 5 | fmpti 7104 | 1 β’ bits:β€βΆπ« β0 |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wcel 2098 {crab 3424 Vcvv 3466 π« cpw 4595 class class class wbr 5139 βΆwf 6530 βcfv 6534 (class class class)co 7402 / cdiv 11870 2c2 12266 β0cn0 12471 β€cz 12557 βcfl 13756 βcexp 14028 β₯ cdvds 16200 bitscbits 16363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-1cn 11165 ax-addcl 11167 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12212 df-n0 12472 df-bits 16366 |
This theorem is referenced by: bitsf1ocnv 16388 bitsf1 16390 eulerpartgbij 33890 eulerpartlemmf 33893 |
Copyright terms: Public domain | W3C validator |