MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf Structured version   Visualization version   GIF version

Theorem bitsf 15555
Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsf bits:ℤ⟶𝒫 ℕ0

Proof of Theorem bitsf
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bits 15550 . 2 bits = (𝑛 ∈ ℤ ↦ {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))})
2 nn0ex 11649 . . . 4 0 ∈ V
3 ssrab2 3908 . . . 4 {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ⊆ ℕ0
42, 3elpwi2 5063 . . 3 {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ∈ 𝒫 ℕ0
54a1i 11 . 2 (𝑛 ∈ ℤ → {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ∈ 𝒫 ℕ0)
61, 5fmpti 6646 1 bits:ℤ⟶𝒫 ℕ0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2107  {crab 3094  Vcvv 3398  𝒫 cpw 4379   class class class wbr 4886  wf 6131  cfv 6135  (class class class)co 6922   / cdiv 11032  2c2 11430  0cn0 11642  cz 11728  cfl 12910  cexp 13178  cdvds 15387  bitscbits 15547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-1cn 10330  ax-addcl 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-nn 11375  df-n0 11643  df-bits 15550
This theorem is referenced by:  bitsf1ocnv  15572  bitsf1  15574  eulerpartgbij  31032  eulerpartlemmf  31035
  Copyright terms: Public domain W3C validator